Show simple item record

dc.contributor.authorYeh, Li-Haoen_US
dc.contributor.authorDong, Jonathanen_US
dc.contributor.authorZhong, Jingshanen_US
dc.contributor.authorTian, Leien_US
dc.contributor.authorChen, Michaelen_US
dc.contributor.authorTang, Gongguoen_US
dc.contributor.authorSoltanolkotabi, Mahdien_US
dc.contributor.authorWaller, Lauraen_US
dc.date.accessioned2017-08-18T21:21:31Z
dc.date.available2017-08-18T21:21:31Z
dc.date.issued2015-12
dc.identifierhttp://www.opticsexpress.org/abstract.cfm?URI=oe-23-26-33214
dc.identifier.citationLi-Hao Yeh, Jonathan Dong, Jingshan Zhong, Lei Tian, Michael Chen, Gongguo Tang, Mahdi Soltanolkotabi, Laura Waller. 2015. "Experimental robustness of Fourier ptychography phase retrieval algorithms." Opt. Express, Volume 23, pp. 33214 - 33240.
dc.identifier.otherhttps://arxiv.org/abs/1511.02986
dc.identifier.urihttps://hdl.handle.net/2144/23574
dc.description.abstractFourier ptychography is a new computational microscopy technique that provides gigapixel-scale intensity and phase images with both wide field-of-view and high resolution. By capturing a stack of low-resolution images under different illumination angles, an inverse algorithm can be used to computationally reconstruct the high-resolution complex field. Here, we compare and classify multiple proposed inverse algorithms in terms of experimental robustness. We find that the main sources of error are noise, aberrations and mis-calibration (i.e. model mis-match). Using simulations and experiments, we demonstrate that the choice of cost function plays a critical role, with amplitude-based cost functions performing better than intensity-based ones. The reason for this is that Fourier ptychography datasets consist of images from both brightfield and darkfield illumination, representing a large range of measured intensities. Both noise (e.g. Poisson noise) and model mis-match errors are shown to scale with intensity. Hence, algorithms that use an appropriate cost function will be more tolerant to both noise and model mis-match. Given these insights, we propose a global Newton’s method algorithm which is robust and accurate. Finally, we discuss the impact of procedures for algorithmic correction of aberrations and mis-calibration.en_US
dc.format.extent33214 - 33240en_US
dc.publisherOSAen_US
dc.relation.ispartofOpt. Express
dc.subjectOptical physicsen_US
dc.subjectCommunications technologiesen_US
dc.subjectElectrical and electronic engineeringen_US
dc.subjectOpticsen_US
dc.subjectPhase retrievalen_US
dc.subjectComputational imagingen_US
dc.titleExperimental robustness of Fourier ptychography phase retrieval algorithmsen_US
dc.typeArticleen_US
dc.identifier.doi10.1364/OE.23.033214
pubs.elements-sourcemanual-entryen_US
pubs.noteskeywords: Phase retrieval; Computational imaging owner: Lei timestamp: 2016.03.20en_US
pubs.notesEmbargo: No embargoen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Engineeringen_US
pubs.organisational-groupBoston University, College of Engineering, Department of Electrical & Computer Engineeringen_US
dc.identifier.orcid0000-0002-1316-4456 (Tian, Lei)


This item appears in the following Collection(s)

Show simple item record