Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Novel phase-space methods to simulate strongly-interacting many-body quantum dynamics

    Thumbnail
    License
    Attribution 4.0 International
    Date Issued
    2017
    Author(s)
    Davidson, Shainen
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/24091
    Abstract
    Understanding the collective behaviour of many-body quantum systems is an important subject in many areas of physics. With advances in ultra-cold gas experiments, the dynamics of strongly-interacting systems can now be studied in the lab. However, there is a paucity of theoretical techniques available to simulate such systems. One technique is phase-space methods, often known as the Truncated Wigner Approximation; however, its applicability in its naive form is limited. In this work, we expound on techniques to expand the regimes in which it can be effective. This involves creating a novel phase-space that is tailored to the problem at hand, and associated classical equations of motion. We show techniques for lattice systems with local finite Hilbert spaces, for fermionic systems, and for many-body localized systems. In all cases, we benchmark the accuracy of the approximation against exact results.
    Rights
    Attribution 4.0 International
    Collections
    • Boston University Theses & Dissertations [6758]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help