Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    MIHash: Online hashing with mutual information

    Thumbnail
    Date Issued
    2017-10-22
    Author(s)
    Fatih, Cakir
    He, Kun
    Bargal, Sarah Adel
    Sclaroff, Stanley
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/26612
    Citation (published version)
    Cakir Fatih, Kun He, Sarah Adel Bargal, Stanley Sclaroff. 2017. "MIHash: Online hashing with mutual information." International Conference on Computer Vision
    Abstract
    Learning-based hashing methods are widely used for nearest neighbor retrieval, and recently, online hashing methods have demonstrated good performance-complexity trade-offs by learning hash functions from streaming data. In this paper, we first address a key challenge for online hashing: the binary codes for indexed data must be recomputed to keep pace with updates to the hash functions. We propose an efficient quality measure for hash functions, based on an information-theoretic quantity, mutual information, and use it successfully as a criterion to eliminate unnecessary hash table updates. Next, we also show how to optimize the mutual information objective using stochastic gradient descent. We thus develop a novel hashing method, MIHash, that can be used in both online and batch settings. Experiments on image retrieval benchmarks (including a 2.5M image dataset) confirm the effectiveness of our formulation, both in reducing hash table recomputations and in learning high-quality hash functions.
    Rights
    This ICCV 2017 paper is the Open Access version, provided by the Computer Vision Foundation. Except for the watermark it is identical to the version available on IEEE Xplore. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.
    Collections
    • BU Open Access Articles [3730]
    • CAS: Computer Science: Scholarly Papers [187]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help