Show simple item record

dc.contributor.authorVan Camp, Mackenzie Anneen_US
dc.date.accessioned2018-02-14T16:27:31Z
dc.date.available2018-02-14T16:27:31Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/2144/27041
dc.description.abstractEntanglement is the hallmark of quantum mechanics. Quantum entanglement -- putting two or more identical particles into a non-factorable state -- has been leveraged for applications ranging from quantum computation and encryption to high-precision metrology. Entanglement is a practical engineering resource and a tool for sidestepping certain limitations of classical measurement and communication. Engineered nonlinear optical waveguides are an enabling technology for generating entangled photon pairs and manipulating the state of single photons. This dissertation reports on: i) frequency conversion of single photons from the mid-infrared to 843nm as a tool for incorporating quantum memories in quantum networks, ii) the design, fabrication, and test of a prototype broadband source of polarization and frequency entangled photons; and iii) a roadmap for further investigations of this source, including applications in quantum interferometry and high-precision optical metrology. The devices presented herein are quasi-phase-matched lithium niobate waveguides. Lithium niobate is a second-order nonlinear optical material and can mediate optical energy conversion to different wavelengths. This nonlinear effect is the basis of both quantum frequency conversion and entangled photon generation, and is enhanced by i) confining light in waveguides to increase conversion efficiency, and ii) quasi-phase matching, a technique for engineering the second-order nonlinear response by locally altering the direction of a material's polarization vector. Waveguides are formed by diffusing titanium into a lithium niobate wafer. Quasi-phase matching is achieved by electric field poling, with multiple stages of process development and optimization to fabricate the delicate structures necessary for broadband entangled photon generation. The results presented herein update and optimize past fabrication techniques, demonstrate novel optical devices, and propose future avenues for device development. Quantum frequency conversion from 1848nm to 843nm is demonstrated for the first time, with >75% single-photon conversion efficiency. A new electric field poling methodology is presented, combining elements from multiple historical techniques with a new fast-feedback control system. This poling technique is used to fabricate the first chirped-and-apodized Type-II quasi-phase-matched structures in titanium-diffused lithium niobate waveguides, culminating in a measured phasematching spectrum that is predominantly Gaussian (R^2 = 0.80), nearly eight times broader than the unchirped spectrum, and agrees well with simulations.en_US
dc.language.isoen_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subjectOpticsen_US
dc.subjectAperiodic polingen_US
dc.subjectDiffused titanium waveguidesen_US
dc.subjectLithium niobateen_US
dc.subjectPhotonicsen_US
dc.subjectQuantum frequency conversionen_US
dc.subjectQuantum vernier effecten_US
dc.titleEngineered quasi-phase matching for nonlinear quantum optics in waveguidesen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2017-11-02T22:16:11Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineElectrical & Computer Engineeringen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International