Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Eugene--a domain specific language for specifying and constraining synthetic biological parts, devices, and systems

    Thumbnail
    License
    Copyright: © 2011 Bilitchenko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Date Issued
    2011-04-29
    Publisher Version
    10.1371/journal.pone.0018882
    Author(s)
    Bilitchenko, Lesia
    Liu, Adam
    Cheung, Sherine
    Weeding, Emma
    Xia, Bing
    Leguia, Mariana
    Anderson, J. Christopher
    Densmore, Douglas
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/27829
    Citation (published version)
    Bilitchenko L, Liu A, Cheung S, Weeding E, Xia B, Leguia M, et al. (2011) Eugene – A Domain Specific Language for Specifying and Constraining Synthetic Biological Parts, Devices, and Systems. PLoS ONE 6(4): e18882. https://doi.org/10.1371/journal.pone.0018882
    Abstract
    BACKGROUND: Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene) that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices) from a collection of individual Parts. RESULTS: We illustrate Eugene's capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene's ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively. CONCLUSIONS: Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly.
    Rights
    Copyright: © 2011 Bilitchenko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Collections
    • BU Open Access Articles [3664]
    • ENG: Electrical and Computer Engineering: Scholarly Papers [252]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help