Show simple item record

dc.contributor.authorSzczesny, Matt M.en_US
dc.date.accessioned2018-03-22T14:51:27Z
dc.date.available2018-03-22T14:51:27Z
dc.identifier.citationMM Szczesny. "Twisted modules and co-invariants for commutative vertex algebras of jet schemes."
dc.identifier.urihttps://hdl.handle.net/2144/27848
dc.identifier.urihttps://arxiv.org/abs/1607.00020
dc.description.abstractLet Z⊂𝔸k be an affine scheme over $\C$ and $\J Z$ its jet scheme. It is well-known that $\mathbb{C}[\J Z]$, the coordinate ring of $\J Z$, has the structure of a commutative vertex algebra. This paper develops the orbifold theory for $\mathbb{C}[\J Z]$. A finite-order linear automorphism g of Z acts by vertex algebra automorphisms on $\mathbb{C}[\J Z]$. We show that $\mathbb{C}[\J^g Z]$, where $\J^g Z$ is the scheme of g--twisted jets has the structure of a g-twisted $\mathbb{C}[\J Z]$ module. We consider spaces of orbifold coinvariants valued in the modules $\mathbb{C}[\J^g Z]$ on orbicurves [Y/G], with Y a smooth projective curve and G a finite group, and show that these are isomorphic to ℂ[ZG].en_US
dc.subjectQuantum algebraen_US
dc.subjectMathematical physicsen_US
dc.subjectAlgebraic geometryen_US
dc.subjectRepresentation theoryen_US
dc.titleTwisted modules and co-invariants for commutative vertex algebras of jet schemesen_US
dc.typeArticleen_US
pubs.elements-sourcemanual-entryen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Mathematics & Statisticsen_US
pubs.publication-statusSubmitteden_US


This item appears in the following Collection(s)

Show simple item record