Show simple item record

dc.contributor.authorKaletha, Tashoen_US
dc.contributor.authorWeinstein, J.en_US
dc.date.accessioned2018-06-08T18:33:44Z
dc.date.available2018-06-08T18:33:44Z
dc.identifier.citationJ Weinstein, Tasho Kaletha. "On the Kottwitz Conjecture for local Shimura varieties." Forum of Mathematics, Pi,
dc.identifier.urihttps://hdl.handle.net/2144/29262
dc.description.abstractKottwitz’s conjecture describes the contribution of a supercuspidal represention to the cohomology of a local Shimura variety in terms of the local Langlands correspondence. Using a Lefschetz-Verdier fixedpoint formula, we prove a weakened generalized version of Kottwitz’s conjecture. The weakening comes from ignoring the action of the Weil group and only considering the actions of the groups G and Jb up to non-elliptic representations. The generalization is that we allow arbitrary connected reductive groups G and non-minuscule coweights µ.en_US
dc.relation.ispartofForum of Mathematics, Pi
dc.subjectNumber theoryen_US
dc.titleOn the Kottwitz conjecture for local Shimura varietiesen_US
dc.typeArticleen_US
pubs.elements-sourcemanual-entryen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Mathematics & Statisticsen_US
pubs.publication-statusSubmitteden_US


This item appears in the following Collection(s)

Show simple item record