Show simple item record

dc.contributor.authorGacs, Peteren_US
dc.date.accessioned2018-06-19T15:21:40Z
dc.date.available2018-06-19T15:21:40Z
dc.date.issued2015-10-01
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000359781700006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationPeter Gacs. 2015. "Clairvoyant embedding in one dimension." Random Structures & Algorithms, Volume 47, Issue 3, pp. 520 - 560 (41).
dc.identifier.issn1042-9832
dc.identifier.issn1098-2418
dc.identifier.urihttps://hdl.handle.net/2144/29420
dc.description.abstractLet v, w be infinite 0‐1 sequences, and urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0001 a positive integer. We say that urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0002 is urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0003‐embeddable in urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0004, if there exists an increasing sequence urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0005 of integers with urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0006, such that urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0007, urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0008 for all urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0009. Let urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0010 and urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0011 be coin‐tossing sequences. We will show that there is an urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0012 with the property that urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0013 is urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0014‐embeddable into urn:x-wiley:10429832:media:rsa20551:rsa20551-math-0015 with positive probability. This answers a question that was open for a while. The proof generalizes somewhat the hierarchical method of an earlier paper of the author on dependent percolation.en_US
dc.format.extentp. 520 - 560en_US
dc.languageEnglish
dc.publisherWiley-Blackwellen_US
dc.relation.ispartofRANDOM STRUCTURES & ALGORITHMS
dc.subjectScience & technologyen_US
dc.subjectTechnologyen_US
dc.subjectPhysical sciencesen_US
dc.subjectComputer science, software engineeringen_US
dc.subjectMathematics, applieden_US
dc.subjectMathematicsen_US
dc.subjectComputer scienceen_US
dc.subjectDependent percolationen_US
dc.subjectClairvoyant demonen_US
dc.subjectMulti-scaleen_US
dc.subjectRenormalizationen_US
dc.subjectPower lawen_US
dc.subjectPure mathematicsen_US
dc.subjectStatisticsen_US
dc.subjectComputation theory and mathematicsen_US
dc.titleClairvoyant embedding in one dimensionen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/rsa.20551
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: No embargoen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Computer Scienceen_US
pubs.publication-statusPublisheden_US


This item appears in the following Collection(s)

Show simple item record