Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Advance reservation games

    Thumbnail
    Date Issued
    2017-04-06
    Publisher Version
    10.1145/3053046
    Author(s)
    Simhon, Eran
    Starobinski, David
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/29597
    Version
    Accepted manuscript
    Citation (published version)
    Eran Simhon, David Starobinski. 2017. "Advance Reservation Games." ACM Transactions on Modeling and Performance Evaluation of Computing Systems, v. 2, issue 2, pp. 1 - 21.
    Abstract
    Advance reservation (AR) services form a pillar of several branches of the economy, including transportation, lodging, dining, and, more recently, cloud computing. In this work, we use game theory to analyze a slotted AR system in which customers differ in their lead times. For each given time slot, the number of customers requesting service is a random variable following a general probability distribution. Based on statistical information, the customers decide whether or not to make an advance reservation of server resources in future slots for a fee. We prove that only two types of equilibria are possible: either none of the customers makes AR or only customers with lead time greater than some threshold make AR. Our analysis further shows that the fee that maximizes the provider’s profit may lead to other equilibria, one of which yields zero profit. In order to prevent ending up with no profit, the provider can elect to advertise a lower fee yielding a guaranteed but smaller profit. We refer to the ratio of the maximum possible profit to the maximum guaranteed profit as the price of conservatism. When the number of customers is a Poisson random variable, we prove that the price of conservatism is one in the single-server case, but can be arbitrarily high in a many-server system.
    Collections
    • BU Open Access Articles [3664]
    • ENG: Electrical and Computer Engineering: Scholarly Papers [252]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help