Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Molecular evidence for sediment nitrogen fixation in a temperate New England estuary

    Thumbnail
    License
    Copyright  © 2016 Newell et al.  Licence: This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
    Date Issued
    2016
    Publisher Version
    10.7717/peerj.1615
    Author(s)
    Newell, Silvia E.
    Pritchard, Kaitlyn R.
    Foster, Sarah Q.
    Fulweiler, Robinson W.
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/30045
    Citation (published version)
    Newell SE, Pritchard KR, Foster SQ, Fulweiler RW. (2016) Molecular evidence for sediment nitrogen fixation in a temperate New England estuary. PeerJ 4:e1615 https://doi.org/10.7717/peerj.1615
    Abstract
    Primary production in coastal waters is generally nitrogen (N) limited with denitrification outpacing nitrogen fixation (N2-fixation). However, recent work suggests that we have potentially underestimated the importance of heterotrophic sediment N2-fixation in marine ecosystems. We used clone libraries to examine transcript diversity of nifH (a gene associated with N2-fixation) in sediments at three sites in a temperate New England estuary (Waquoit Bay, Massachusetts, USA) and compared our results to net sediment N2 fluxes previously measured at these sites. We observed nifH expression at all sites, including a site heavily impacted by anthropogenic N. At this N impacted site, we also observed mean net sediment N2-fixation, linking the geochemical rate measurement with nifH expression. This same site also had the lowest diversity (non-parametric Shannon = 2.75). At the two other sites, we also detected nifH transcripts, however, the mean N2 flux indicated net denitrification. These results suggest that N2-fixation and denitrification co-occur in these sediments. Of the unique sequences in this study, 67% were most closely related to uncultured bacteria from various marine environments, 17% to Cluster III, 15% to Cluster I, and only 1% to Cluster II. These data add to the growing body of literature that sediment heterotrophic N2-fixation, even under high inorganic nitrogen concentrations, may be an important yet overlooked source of N in coastal systems.
    Rights
    Copyright © 2016 Newell et al. Licence: This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
    Collections
    • BU Open Access Articles [3664]
    • CAS: Earth & Environment: Scholarly Papers [111]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help