Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Generation of hemophilia B model hepatocyte derived from human iPSC via CRISPR/Cas9 mediated genome editing

    Thumbnail
    Date Issued
    2018
    Author(s)
    Kwak, Peter
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/31237
    Abstract
    Permanent repair of the F9 gene is a significant goal to cure Hemophilia B disease. Advanced gene therapy using CRISPR/Cas9 system can increase circulation level of Factor IX proteins to a significant level without the need of demanding infusions of FIX concentrates. Induced pluripotent stem cells represent an ideal cell for gene therapy because patient-derived cells could be reprogrammed into iPSCs, genetically modified, selected, expanded and then induced to differentiate into fully functional hepatocytes in vitro. This study covered a portion of a 5-year project which ultimately aims at establishing therapeutic results in transgenic Hemophilia B mice by injecting genetically corrected iPSC-derived hepatocytes into the liver. The purpose of this thesis is to summarize what has been completed up to now: generation of the proper model of Hemophilia B human iPSCs using CRISPR/Cas9-mediated genome editing and differentiation of healthy and disease specific iPSCs into hepatocytes which will allow disease modelling to look for cell function, viability, homogeneity and drug screening. Further research will be done to effectively knock-in the F9 allele into liver safe harbor site of disease specific iPSCs, which will express FIX at a significant level to show therapeutic effects.
    Collections
    • Boston University Theses & Dissertations [6758]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help