Show simple item record

dc.contributor.authorGhaffarivardavagh, Rezaen_US
dc.contributor.authorNikolajczyk, Jacoben_US
dc.contributor.authorAnderson, Stephanen_US
dc.contributor.authorZhang, Xinen_US
dc.contributor.authorHolt, R. Glynnen_US
dc.date.accessioned2018-09-26T15:21:05Z
dc.date.available2018-09-26T15:21:05Z
dc.date.issued2018-04-10
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000429521200001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationReza Ghaffarivardavagh, Jacob Nikolajczyk, R Glynn Holt, Stephan Anderson, Xin Zhang. 2018. "Horn-like space-coiling metamaterials toward simultaneous phase and amplitude modulation." Nature Communications, v. 9, p. 1349 (8). https://doi.org/10.1038/s41467-018-03839-z
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/2144/31333
dc.description.abstractAcoustic metasurfaces represent a family of planar wavefront-shaping devices garnering increasing attention due to their capacity for novel acoustic wave manipulation. By precisely tailoring the geometry of these engineered surfaces, the effective refractive index may be modulated and, consequently, acoustic phase delays tuned. Despite the successful demonstration of phase engineering using metasurfaces, amplitude modulation remains overlooked. Herein, we present a class of metasurfaces featuring a horn-like space-coiling structure, enabling acoustic control with simultaneous phase and amplitude modulation. The functionality of this class of metasurfaces, featuring a gradient in channel spacing, has been investigated theoretically and numerically and an equivalent model simplifying the structural behavior is presented. A metasurface featuring this geometry has been designed and its functionality in modifying acoustic radiation patterns experimentally validated. This class of acoustic metasurface provides an efficient design methodology enabling complete acoustic wave manipulation, which may find utility in applications including biomedical imaging, acoustic communication, and non-destructive testing.en_US
dc.description.sponsorshipWe thank Boston University Materials Innovation Grant and Dean's Catalyst Award. We also thank the Boston University Photonics Center for technical support. (Boston University Materials Innovation Grant; Dean's Catalyst Award)en_US
dc.format.extentp. 1-8en_US
dc.languageEnglish
dc.publisherNature Publishing Groupen_US
dc.relation.ispartofNature Communications
dc.relation.isversionof10.1038/s41467-018-03839-z
dc.rightsAttribution 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & technologyen_US
dc.subjectMultidisciplinary sciencesen_US
dc.subjectWave-fronten_US
dc.subjectMetasurfacesen_US
dc.subjectImpedanceen_US
dc.subjectSounden_US
dc.subjectMD multidisciplinaryen_US
dc.titleHorn-like space-coiling metamaterials toward simultaneous phase and amplitude modulationen_US
dc.typeArticleen_US
dc.identifier.doi10.1038/s41467-018-03839-z
pubs.elements-sourcemanual-entryen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Engineeringen_US
pubs.organisational-groupBoston University, College of Engineering, Department of Mechanical Engineeringen_US
pubs.organisational-groupBoston University, School of Medicineen_US
pubs.publication-statusPublisheden_US
dc.identifier.orcid0000-0002-4413-5084 (Zhang, Xin)


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International