Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Effects of confinement on the thermodynamics of supercooled water

    Thumbnail
    Date Issued
    2012
    Author(s)
    Strekalova, Elena G.
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Embargoed until:
    Indefinite
    Permanent Link
    https://hdl.handle.net/2144/31610
    Abstract
    The main focus of this thesis is to understand how confinement alters the phase diagram of supercooled liquid water by employing methods of statistical mechanics and numerical simulations. Water is very complex and anomalous when compared to simple liquids. For example, experimental data for liquid water reveals the presence of a temperature of maximum density (TMD) below which the density decreases under isobaric cooling. Another anomaly is the hypothesized liquid- liquid phase transition (LLPT) between two types of liquid water with different densities. In this thesis we study how confinement affects such anomalies as TMD and LLPT in supercooled liquid water. This thesis is separated into three parts: (i) Monte Carlo simulations of a 2D coarsegrained model of a water layer confined in a fixed disordered matrix of hydrophobic nanoparticles, (ii) molecular dynamics simulations of a Jagla ramp model of liquid confined in fixed ordered and disordered matrices of hydrophobic nanoparticles, and (iii ) all-atom simulations of trehalose and maltose in aqueous solut ion of lysozyme. In Part (i), we perform Monte Carlo simulations and find that a nanoparticle concentration as small as 2.4% is enough to destroy the LLPT for pressure P > 0.14 GPa. Moreover, we find a substantial (more t han 90%) decrease of compressibility, t hermal expansion coefficient and specific heat at high P and low temperature T upon increase of nanoparticle concentration from 0% to 25%. In Part (ii), we ask how, for single component systems interacting via a soft-core isotropic potential with two characteristic length scales, t he geometry of hydrophobic confinement affects the phase diagram. We use molecular dynamics simulations to study particles interacting through a ramp potential and a shoulder potential, each confined in a fixed matrix of nanoscopic particles with a fixed volume fraction. We find a substantial weakening of the LLPT and the disappearance of TMD upon the increase of disorder in the confining geometry. In Part (iii), we study aqueous systems with all-atom simulations. We are currently investigating the mechanism of water-trehalose-protein and water-maltose-protein interaction upon supercooling for its relevance to bioprotection.
    Description
    Thesis (Ph.D.)--Boston University
     
    PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
     
    Collections
    • Boston University Theses & Dissertations [6905]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help