Show simple item record

dc.contributor.authorCho, Cheol-Hyunen_US
dc.contributor.authorHong, Hansolen_US
dc.contributor.authorKim, Sang-hyunen_US
dc.contributor.authorLau, Siu-Cheongen_US
dc.date.accessioned2018-10-26T15:28:10Z
dc.date.available2018-10-26T15:28:10Z
dc.date.issued2017-01
dc.identifier.citationCheol-Hyun Cho, Hansol Hong, Sang-hyun Kim, Siu-Cheong Lau. 2017. "Lagrangian Floer potential of orbifold spheres." Advances in Mathematics, v. 306, pp. 344 - 426. https://doi.org/10.1016/j.aim.2016.10.017
dc.identifier.issn0001-8708
dc.identifier.urihttps://hdl.handle.net/2144/31670
dc.description.abstractFor each sphere with three orbifold points, we construct an algorithm to compute the open Gromov–Witten potential, which serves as the quantum-corrected Landau–Ginzburg mirror and is an infinite series in general. This gives the first class of general-type geometries whose full potentials can be computed. As a consequence we obtain an enumerative meaning of mirror maps for elliptic curve quotients. Furthermore, we prove that the open Gromov–Witten potential is convergent, even in the general-type cases, and has an isolated singularity at the origin, which is an important ingredient of proving homological mirror symmetry.en_US
dc.description.sponsorshipNational Research Foundation of Korea; 2010-0019516; 2012R1A1A2003117; 2013R1A1A1058646 - National Research Foundation of Koreaen_US
dc.format.extentp. 344-426en_US
dc.relation.ispartofAdvances in Mathematics
dc.relation.isversionof10.1016/j.aim.2016.10.017
dc.subjectPure mathematicsen_US
dc.subjectGeneral mathematicsen_US
dc.subjectLagrangian Floer homologyen_US
dc.subjectMirror symmetryen_US
dc.subjectHolomorphic discsen_US
dc.subjectMirror mapen_US
dc.subjectOrbifolden_US
dc.titleLagrangian Floer potential of orbifold spheresen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.aim.2016.10.017
pubs.elements-sourcecrossrefen_US
pubs.notespublisher: Elsevier articletitle: Lagrangian Floer potential of orbifold spheres journaltitle: Advances in Mathematics articlelink: https://doi.org/10.1016/j.aim.2016.10.017 content_type: article copyright: © 2016 Elsevier Inc. All rights reserved.en_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Mathematics & Statisticsen_US
pubs.publication-statusPublisheden_US


This item appears in the following Collection(s)

Show simple item record