Show simple item record

dc.contributor.advisorCastanon, David A.en_US
dc.contributor.authorDing, Huanyuen_US
dc.date.accessioned2018-11-13T14:37:37Z
dc.date.available2018-11-13T14:37:37Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/2144/32075
dc.description.abstractThe problem of searching for objects of interest occurs in important applications ranging from rescue, security, transportation, to medicine. With the increasing use of autonomous vehicles as search platforms, there is a need for fast algorithms that can generate search plans for multiple agents in response to new information. In this dissertation, we develop new techniques for automated generation of search plans for different classes of search problems. First, we study the problem of searching for a stationary object in a discrete search space with multiple agents where each agent can access only a subset of the search space. In these problems, agents can fail to detect an object when inspecting a location. We show that when the probabilities of detection only depend on the locations, this problem can be reformulated as a minimum cost network optimization problem, and develop a fast specialized algorithm for the solution. We prove that our algorithm finds the optimal solution in finite time, and has worst-case computation performance that is faster than general minimum cost flow algorithms. We then generalize it to the case where the probabilities of detection depend on the agents and the locations, and propose a greedy algorithm that is 1/2-approximate. Second, we study the problem of searching for a moving object in a discrete search space with multiple agents where each agent can access only a subset of a discrete search space at any time and agents can fail to detect objects when searching a location at a given time. We provide necessary conditions for an optimal search plan, extending prior results in search theory. For the case where the probabilities of detection depend on the locations and the time periods, we develop a forward-backward iterative algorithm based on coordinate descent techniques to obtain solutions. To avoid local optimum, we derive a convex relaxation of the dynamic search problem and show this can be solved optimally using coordinate descent techniques. The solutions of the relaxed problem are used to provide random starting conditions for the iterative algorithm. We also address the problem where the probabilities of detection depend on the agents as well as the locations and the time periods, and show that a greedy-style algorithm is 1/2-approximate. Third, we study problems when multiple objects of interest being searched are physically scattered among locations on a graph and the agents are subject to motion constraints captured by the graph edges as well as budget constraints. We model such problem as an orienteering problem, when searching with a single agent, or a team orienteering problem, when searching with multiple agents. We develop novel real-time efficient algorithms for both problems. Fourth, we investigate classes of continuous-region multi-agent adaptive search problems as stochastic control problems with imperfect information. We allow the agent measurement errors to be either correlated or independent across agents. The structure of these problems, with objectives related to information entropy, allows for a complete characterization of the optimal strategies and the optimal cost. We derive a lower bound on the performance of the minimum mean-square error estimator, and provide upper bounds on the estimation error for special cases. For agents with independent errors, we show that the optimal sensing strategies can be obtained in terms of the solution of decoupled scalar convex optimization problems, followed by a joint region selection procedure. We further consider search of multiple objects and provide an explicit construction for adaptively determining the sensing actions.en_US
dc.language.isoen_US
dc.subjectEngineeringen_US
dc.subjectAlgorithmsen_US
dc.subjectControlen_US
dc.subjectOptimizationen_US
dc.subjectSearchen_US
dc.subjectMulti-agent systemsen_US
dc.titleModels and algorithms for multi-agent search problemsen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2018-10-22T22:02:24Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineElectrical & Computer Engineeringen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record