Show simple item record

dc.contributor.authorLiu, Luen_US
dc.contributor.authorSandvik, Anders W.en_US
dc.contributor.authorGuo, Wenanen_US
dc.date.accessioned2018-12-06T16:30:22Z
dc.date.available2018-12-06T16:30:22Z
dc.date.issued2018-08-01
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000442032100001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationLu Liu, Anders W Sandvik, Wenan Guo. 2018. "Typicality at quantum-critical points." CHINESE PHYSICS B, Volume 27, Issue 8. https://doi.org/10.1088/1674-1056/27/8/087501
dc.identifier.issn1674-1056
dc.identifier.issn1741-4199
dc.identifier.urihttps://hdl.handle.net/2144/32890
dc.description.abstractWe discuss the concept of typicality of quantum states at quantum-critical points, using projector Monte Carlo simulations of an S = 1/2 bilayer Heisenberg antiferromagnet as an illustration. With the projection (imaginary) time τ scaled as τ = aLz , L being the system length and z the dynamic critical exponent (which takes the value z = 1 in the bilayer model studied here), a critical point can be identified which asymptotically flows to the correct location and universality class with increasing L, independently of the prefactor a and the initial state. Varying the proportionality factor a and the initial state only changes the cross-over behavior into the asymptotic large-L behavior. In some cases, choosing an optimal factor a may also lead to the vanishing of the leading finite-size corrections. The observation of typicality can be used to speed up simulations of quantum criticality, not only within the Monte Carlo approach but also with other numerical methods where imaginary-time evolution is employed, e.g., tensor network states, as it is not necessary to evolve fully to the ground state but only for sufficiently long times to reach the typicality regime.en_US
dc.description.sponsorshipProject supported by the National Natural Science Foundation of China (Grant Nos. 11734002 and 11775021), the National Science Foundation (Grant No. DMR-1710170), and a Simons Investigator Award. (11734002 - National Natural Science Foundation of China; 11775021 - National Natural Science Foundation of China; DMR-1710170 - National Science Foundation; Simons Investigator Award)en_US
dc.languageEnglish
dc.publisherIOP PUBLISHING LTDen_US
dc.relation.ispartofChinese Physics B
dc.subjectScience & technologyen_US
dc.subjectPhysical sciencesen_US
dc.subjectPhysicsen_US
dc.subjectTypicalityen_US
dc.subjectQuantum criticalityen_US
dc.subjectBilayer Heisenberg antiferromagnet modelen_US
dc.subjectImaginary projecting timeen_US
dc.subjectMonte Carlo simulationen_US
dc.subjectANTIFERROMAGNETIC HEISENBERG-MODELen_US
dc.subjectSquare latticeen_US
dc.subjectCondensed matteren_US
dc.subjectMathematical sciencesen_US
dc.subjectEngineeringen_US
dc.subjectGeneral physicsen_US
dc.titleTypicality at quantum-critical pointsen_US
dc.typeArticleen_US
dc.description.versionAccepted manuscripten_US
dc.identifier.doi10.1088/1674-1056/27/8/087501
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Physicsen_US
pubs.publication-statusPublisheden_US
dc.identifier.orcid0000-0002-5638-4619 (Sandvik, Anders W)


This item appears in the following Collection(s)

Show simple item record