Show simple item record

dc.contributor.advisorLiu, Ching-Tien_US
dc.contributor.authorFisher, Virginia Applegateen_US
dc.date.accessioned2019-01-31T15:12:50Z
dc.date.available2019-01-31T15:12:50Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/2144/33248
dc.description.abstractGenome-wide association studies (GWAS) have successfully identified thousands of variants robustly associated with hundreds of complex traits, but the biological mechanisms driving these results remain elusive. Functional annotation, describing the roles of known genes and regulatory elements, provides additional information about associated variants. This dissertation explores the potential of these annotations to explain the biology behind observed GWAS results. The first project develops a random-effects approach to genetic fine mapping of trait-associated loci. Functional annotation and estimates of the enrichment of genetic effects in each annotation category are integrated with linkage disequilibrium (LD) within each locus and GWAS summary statistics to prioritize variants with plausible functionality. Applications of this method to simulated and real data show good performance in a wider range of scenarios relative to previous approaches. The second project focuses on the estimation of enrichment by annotation categories. I derive the distribution of GWAS summary statistics as a function of annotations and LD structure and perform maximum likelihood estimation of enrichment coefficients in two simulated scenarios. The resulting estimates are less variable than previous methods, but the asymptotic theory of standard errors is often not applicable due to non-convexity of the likelihood function. In the third project, I investigate the problem of selecting an optimal set of tissue-specific annotations with greatest relevance to a trait of interest. I consider three selection criteria defined in terms of the mutual information between functional annotations and GWAS summary statistics. These algorithms correctly identify enriched categories in simulated data, but in the application to a GWAS of BMI the penalty for redundant features outweighs the modest relationships with the outcome yielding null selected feature sets, due to the weaker overall association and high similarity between tissue-specific regulatory features. All three projects require little in the way of prior hypotheses regarding the mechanism of genetic effects. These data-driven approaches have the potential to illuminate unanticipated biological relationships, but are also limited by the high dimensionality of the data relative to the moderate strength of the signals under investigation. These approaches advance the set of tools available to researchers to draw biological insights from GWAS results.en_US
dc.language.isoen_US
dc.rightsAttribution-NonCommercial 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectBiostatisticsen_US
dc.subjectGWASen_US
dc.subjectFeature selectionen_US
dc.subjectFine mappingen_US
dc.subjectFunctional annotationen_US
dc.subjectRandom effectsen_US
dc.titleUsing functional annotation to characterize genome-wide association resultsen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2018-12-11T23:05:02Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineBiostatisticsen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 4.0 International