Show simple item record

dc.contributor.advisorBetke, Margriten_US
dc.contributor.authorFeng, Wenxinen_US
dc.date.accessioned2019-01-31T19:40:09Z
dc.date.available2019-01-31T19:40:09Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/2144/33268
dc.description.abstractMillions of individuals affected by disorders or injuries that cause severe motor impairments have difficulty performing compound manipulations using traditional input devices. This thesis first explores how effective various assistive technologies are for people with motor impairments. The following questions are studied: (1) What activities are performed? (2) What tools are used to support these activities? (3) What are the advantages and limitations of these tools? (4) How do users learn about and choose assistive technologies? (5) Why do users adopt or abandon certain tools? A qualitative study of fifteen people with motor impairments indicates that users have strong needs for efficient text entry and communication tools that are not met by existing technologies. To address these needs, this thesis proposes three dwell-free input methods, designed to improve the efficacy of target selection and text entry based on eye-tracking and head-tracking systems. They yield: (1) the Target Reverse Crossing selection mechanism, (2) the EyeSwipe eye-typing interface, and (3) the HGaze Typing interface. With Target Reverse Crossing, a user moves the cursor into a target and reverses over a goal to select it. This mechanism is significantly more efficient than dwell-time selection. Target Reverse Crossing is then adapted in EyeSwipe to delineate the start and end of a word that is eye-typed with a gaze path connecting the intermediate characters (as with traditional gesture typing). When compared with a dwell-based virtual keyboard, EyeSwipe affords higher text entry rates and a more comfortable interaction. Finally, HGaze Typing adds head gestures to gaze-path-based text entry to enable simple and explicit command activations. Results from a user study demonstrate that HGaze Typing has better performance and user satisfaction than a dwell-time method.en_US
dc.language.isoen_US
dc.subjectComputer scienceen_US
dc.titleDwell-free input methods for people with motor impairmentsen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2018-12-11T23:05:24Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineComputer Scienceen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record