Show simple item record

dc.contributor.authorGan, Kok A.en_US
dc.contributor.authorPro, Sebastian Carrascoen_US
dc.contributor.authorSewell, Jared A.en_US
dc.contributor.authorFuxman Bass, Juan I.en_US
dc.date.accessioned2019-02-06T15:13:51Z
dc.date.available2019-02-06T15:13:51Z
dc.date.issued2018-02-02
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000423993900001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationKok A Gan, Sebastian Carrasco Pro, Jared A Sewell, Juan I Fuxman Bass. 2018. "Identification of Single Nucleotide Non-coding Driver Mutations in Cancer." FRONTIERS IN GENETICS, Volume 9, pp. ? - ? (10). https://doi.org/10.3389/fgene.2018.00016
dc.identifier.issn1664-8021
dc.identifier.urihttps://hdl.handle.net/2144/33283
dc.description.abstractRecent whole-genome sequencing studies have identified millions of somatic variants present in tumor samples. Most of these variants reside in non-coding regions of the genome potentially affecting transcriptional and post-transcriptional gene regulation. Although a few hallmark examples of driver mutations in non-coding regions have been reported, the functional role of the vast majority of somatic non-coding variants remains to be determined. This is because the few driver variants in each sample must be distinguished from the thousands of passenger variants and because the logic of regulatory element function has not yet been fully elucidated. Thus, variants prioritized based on mutational burden and location within regulatory elements need to be validated experimentally. This is generally achieved by combining assays that measure physical binding, such as chromatin immunoprecipitation, with those that determine regulatory activity, such as luciferase reporter assays. Here, we present an overview of in silico approaches used to prioritize somatic non-coding variants and the experimental methods used for functional validation and characterization.en_US
dc.description.sponsorshipThis work was supported by the National Institutes of Health to JFB (R00 GM114296 from the NIGMS) and to JS (5T32HL007501-34 from the NHLBI). (R00 GM114296 - National Institutes of Health from the NIGMS; 5T32HL007501-34 - National Institutes of Health from the NHLBI)en_US
dc.format.extent10 p.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherFrontiers Media SAen_US
dc.relation.ispartofFrontiers in genetics
dc.rightsAttribution 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & technologyen_US
dc.subjectLife sciences & biomedicineen_US
dc.subjectGenetics & heredityen_US
dc.subjectCanceren_US
dc.subjectNon-coding mutationen_US
dc.subjectDriver mutationen_US
dc.subjectHotspot analysisen_US
dc.subjectMotif analysisen_US
dc.subjectTERT promoter mutationsen_US
dc.subjectBreast canceren_US
dc.subjectSomatic mutationsen_US
dc.subjectHuman genomeen_US
dc.subjectTranslation efficiencyen_US
dc.subjectRegulatory mutationsen_US
dc.subjectReporter assayen_US
dc.subjectBinding sitesen_US
dc.subjectBRCA1 geneen_US
dc.subjectHuman cellen_US
dc.subjectDriver mutationen_US
dc.titleIdentification of single nucleotide non-coding driver mutations in canceren_US
dc.typeArticleen_US
dc.description.versionPublished versionen_US
dc.identifier.doi10.3389/fgene.2018.00016
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Biologyen_US
pubs.publication-statusPublisheden_US


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International