Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Influence of leaf specular reflection on canopy radiative regime using an improved version of the stochastic radiative transfer model

    Thumbnail
    License
    Attribution 4.0 International
    Date Issued
    2018-10-01
    Publisher Version
    10.3390/rs10101632
    Author(s)
    Yang, Bin
    Knyazikhin, Yuri
    Xie, Donghui
    Zhao, Haimeng
    Zhang, Junqiang
    Wu, Yi
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/33313
    Version
    Accepted manuscript
    Citation (published version)
    Bin Yang, Yuri Knyazikhin, Donghui Xie, Haimeng Zhao, Junqiang Zhang, Yi Wu. 2018. "Influence of Leaf Specular Reflection on Canopy Radiative Regime Using an Improved Version of the Stochastic Radiative Transfer Model." REMOTE SENSING, Volume 10, Issue 10, pp. ? - ? (17). https://doi.org/10.3390/rs10101632
    Abstract
    Interpreting remotely-sensed data requires realistic, but simple, models of radiative transfer that occurs within a vegetation canopy. In this paper, an improved version of the stochastic radiative transfer model (SRTM) is proposed by assuming that all photons that have not been specularly reflected enter the leaf interior. The contribution of leaf specular reflection is considered by modifying leaf scattering phase function using Fresnel reflectance. The canopy bidirectional reflectance factor (BRF) estimated from this model is evaluated through comparisons with field-measured maize BRF. The result shows that accounting for leaf specular reflection can provide better performance than that when leaf specular reflection is neglected over a wide range of view zenith angles. The improved version of the SRTM is further adopted to investigate the influence of leaf specular reflection on the canopy radiative regime, with emphases on vertical profiles of mean radiation flux density, canopy absorptance, BRF, and normalized difference vegetation index (NDVI). It is demonstrated that accounting for leaf specular reflection can increase leaf albedo, which consequently increases canopy mean upward/downward mean radiation flux density and canopy nadir BRF and decreases canopy absorptance and canopy nadir NDVI when leaf angles are spherically distributed. The influence is greater for downward/upward radiation flux densities and canopy nadir BRF than that for canopy absorptance and NDVI. The results provide knowledge of leaf specular reflection and canopy radiative regime, and are helpful for forward reflectance simulations and backward inversions. Moreover, polarization measurements are suggested for studies of leaf specular reflection, as leaf specular reflection is closely related to the canopy polarization.
    Rights
    Attribution 4.0 International
    Collections
    • CAS: Earth & Environment: Scholarly Papers [111]
    • BU Open Access Articles [3664]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help