Show simple item record

dc.contributor.authorAleksić, J.en_US
dc.contributor.authorAnsoldi, S.en_US
dc.contributor.authorAntonelli, L. A.en_US
dc.contributor.authorAntoranz, P.en_US
dc.contributor.authorBabic, A.en_US
dc.contributor.authorBangale, P.en_US
dc.contributor.authorde Almeida, U. B.en_US
dc.contributor.authorBarrio, J. A.en_US
dc.contributor.authorGonzález, J. B.en_US
dc.contributor.authorBednarek, W.en_US
dc.date.accessioned2019-02-19T16:15:52Z
dc.date.available2019-02-19T16:15:52Z
dc.date.issued2014-09-17
dc.identifier.citationJ Aleksić, S Ansoldi, LA Antonelli, P Antoranz, A Babic, P Bangale, UB de Almeida, JA Barrio, JB González, W Bednarek. 2014. "MAGIC gamma-ray and multi-frequency observations of flat spectrum radio quasar PKS 1510− 089 in early 2012." Astronomy & Astrophysics, Volume 569, pp. A46 - A46 (21). https://doi.org/10.1051/0004-6361/201423484
dc.identifier.issn0004-6361
dc.identifier.urihttps://hdl.handle.net/2144/33336
dc.description.abstractAIMS: Amongst more than fifty blazars detected in very high energy (VHE, E> 100 GeV) γ rays, only three belong to the subclass of flat spectrum radio quasars (FSRQs). The detection of FSRQs in the VHE range is challenging, mainly because of their soft spectra in the GeV-TeV regime. MAGIC observed PKS 1510−089 (z = 0.36) starting 2012 February 3 until April 3 during a high activity state in the high energy (HE, E> 100 MeV) γ-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 standard deviations (σ). We study the multi-frequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO, and VLBA telescopes), X-ray (Swift satellite), and HE γ-ray frequencies. METHODS: We study the VHE γ-ray emission, together with the multi-frequency light curves, 43 GHz radio maps, and spectral energy distribution (SED) of the source. The quasi-simultaneous multi-frequency SED from the millimetre radio band to VHE γ rays is modelled with a one-zone inverse Compton model. We study two different origins of the seed photons for the inverse Compton scattering, namely the infrared torus and a slow sheath surrounding the jet around the Very Long Baseline Array (VLBA) core. RESULTS: We find that the VHE γ-ray emission detected from PKS 1510−089 in 2012 February-April agrees with the previous VHE observations of the source from 2009 March-April. We find no statistically significant variability during the MAGIC observations on daily, weekly, or monthly time scales, while the other two known VHE FSRQs (3C 279 and PKS 1222+216) have shown daily scale to sub-hour variability. The γ-ray SED combining AGILE, Fermi and MAGIC data joins smoothly and shows no hint of a break. The multi-frequency light curves suggest a common origin for the millimetre radio and HE γ-ray emission, and the HE γ-ray flaring starts when the new component is ejected from the 43 GHz VLBA core and the studied SED models fit the data well. However, the fast HE γ-ray variability requires that within the modelled large emitting region, more compact regions must exist. We suggest that these observed signatures would be most naturally explained by a turbulent plasma flowing at a relativistic speed down the jet and crossing a standing conical shock.en_US
dc.description.sponsorshipBy using this website, you agree that EDP Sciences may store web audience measurement cookies and, on some pages, cookies from social networks. More information and setupOK aa Worldwide astronomical and astrophysical research Subscriber Authentication Point EDPS Account Advanced Search EDP Sciences ALL ISSUESSPECIAL ISSUESFORTHCOMINGPRESS RELEASESHIGHLIGHTSNEWSEVENTS Home All issues Volume 569 (September 2014) A&A, 569 (2014) A46 Abstract Homepage Table of Contents Previous articleNext article ARTICLE Abstract Full HTML PDF (1.356 MB) ePUB (2.050 MB) References Simbad Objects NASA ADS Abstract Service METRICS Show article metrics Article has an altmetric score of 1 SERVICES Articles citing this article CrossRef (40) Same authors - Google Scholar - NASA ADS - EDP Sciences database Recommend this article Send to my Kindle Download citation RELATED ARTICLES PKS 1510-089: a rare example of a flat spectrum radio quasar with a very high-energy emission A&A 567, A113 (2014) Multiwavelength flaring activity of PKS 1510-089 A&A 606, A87 (2017) H.E.S.S. discovery of VHE γ-rays from the quasar PKS 1510−089 A&A 554, A107 (2013) More BOOKMARKING Reader's services Email-alert Free Access Issue A&A Volume 569, September 2014 Article Number A46 Number of page(s) 21 Section Extragalactic astronomy DOI https://doi.org/10.1051/0004-6361/201423484 Published online 17 September 2014 A&A 569, A46 (2014) MAGIC gamma-ray and multi-frequency observations of flat spectrum radio quasar PKS 1510−089 in early 2012 J. Aleksić1, S. Ansoldi2, L. A. Antonelli3, P. Antoranz4, A. Babic5, P. Bangale6, U. Barres de Almeida6, J. A. Barrio7, J. Becerra González8,25, W. Bednarek9, E. Bernardini10, A. Biland11, O. Blanch1, S. Bonnefoy7, G. Bonnoli3, F. Borracci6, T. Bretz12,26, E. Carmona13, A. Carosi3, D. Carreto Fidalgo7, P. Colin6, E. Colombo8, J. L. Contreras7, J. Cortina1, S. Covino3, P. Da Vela4, F. Dazzi6, A. De Angelis2, G. De Caneva10,⋆, B. De Lotto2, C. Delgado Mendez13, M. Doert14, A. Domínguez15,27, D. Dominis Prester5, D. Dorner12, M. Doro16, S. Einecke14, D. Eisenacher12, D. Elsaesser12, E. Farina17, D. Ferenc5, M. V. Fonseca7, L. Font18, K. Frantzen14, C. Fruck6, R. J. García López8, M. Garczarczyk10, D. Garrido Terrats18, M. Gaug18, N. Godinović5, A. González Muñoz1, S. R. Gozzini10, D. Hadasch19, M. Hayashida20, J. Herrera8, A. Herrero8, D. Hildebrand11, J. Hose6, D. Hrupec5, W. Idec9, V. Kadenius21, H. Kellermann6, K. Kodani20, Y. Konno20, J. Krause6, H. Kubo20, J. Kushida20, A. La Barbera3, D. Lelas5, N. Lewandowska12, E. Lindfors21,28, S. Lombardi3, M. López7, R. López-Coto1, A. López-Oramas1, E. Lorenz6, I. Lozano7, M. Makariev22, K. Mallot10, G. Maneva22, N. Mankuzhiyil2, K. Mannheim12, L. Maraschi3, B. Marcote23, M. Mariotti16, M. Martínez1, D. Mazin6, U. Menzel6, M. Meucci4, J. M. Miranda4, R. Mirzoyan6, A. Moralejo1, P. Munar-Adrover23, D. Nakajima20, A. Niedzwiecki9, K. Nilsson21,28, K. Nishijima20, K. Noda6, N. Nowak6, R. Orito20, A. Overkemping14, S. Paiano16, M. Palatiello2, D. Paneque6, R. Paoletti4, J. M. Paredes23, X. Paredes-Fortuny23, S. Partini4, M. Persic2,29, F. Prada15,30, P. G. Prada Moroni24, E. Prandini11, S. Preziuso4, I. Puljak5, R. Reinthal21, W. Rhode14, M. Ribó23, J. Rico1, J. Rodriguez Garcia6, S. Rügamer12, A. Saggion16, T. Saito20,⋆, K. Saito20,⋆, K. Satalecka7, V. Scalzotto16, V. Scapin7, C. Schultz16, T. Schweizer6, S. N. Shore24, A. Sillanpää21, J. Sitarek1,⋆, I. Snidaric5, D. Sobczynska9, F. Spanier12, V. Stamatescu1, A. Stamerra3, T. Steinbring12, J. Storz12, M. Strzys6, S. Sun6, T. Surić5, L. Takalo21, H. Takami20, F. Tavecchio3,⋆, P. Temnikov22, T. Terzić5, D. Tescaro8, M. Teshima6, J. Thaele14, O. Tibolla12, D. F. Torres19, T. Toyama6, A. Treves17, M. Uellenbeck14, P. Vogler11, R. M. Wagner6,31, F. Zandanel15,32, R. Zanin23, (the MAGIC Collaboration), F. Lucarelli34, C. Pittori34, S. Vercellone35, F. Verrecchia34, (for the AGILE Collaboration), S. Buson16, F. D’Ammando33,44, L. Stawarz62,63, M. Giroletti44, M. Orienti44, (for the Fermi-LAT Collaboration), C. Mundell36, I. Steele36, B. Zarpudin37, C. M. Raiteri38, M. Villata38, A. Sandrinelli16, A. Lähteenmäki39,40, J. Tammi39, M. Tornikoski39, T. Hovatta41, A. C. S. Readhead41, W. Max-Moerbeck41, J. L. Richards42, S. Jorstad43, A. Marscher43, M. A. Gurwell45, V. M. Larionov46,47,48, D. A. Blinov49,46, T. S. Konstantinova46, E. N. Kopatskaya46, L. V. Larionova46, E. G. Larionova46, D. A. Morozova46, I. S. Troitsky46, A. A. Mokrushina46, Yu. V. Pavlova46, W. P. Chen50, H. C. Lin50, N. Panwar50, I. Agudo51,52,43, C. Casadio51, J. L. Gómez51, S. N. Molina51, O. M. Kurtanidze53,54,55, M. G. Nikolashvili53, S. O. Kurtanidze53, R. A. Chigladze53, J. A. Acosta-Pulido56,57, M. I. Carnerero38,56,57, A. Manilla-Robles57, E. Ovcharov58, V. Bozhilov58, I. Metodieva58, M. F. Aller59, H. D. Aller59, L. Fuhrman60, E. Angelakis60, I. Nestoras60, T. P. Krichbaum60, J. A. Zensus60, H. Ungerechts61 and A. Sievers61 1 IFAE, Campus UAB, 08193 Bellaterra, Spain 2 Università di Udine, and INFN Trieste, 33100 Udine, Italy 3 INAF National Institute for Astrophysics, 00136 Rome, Italy 4 Università di Siena, and INFN Pisa, 53100 Siena, Italy 5 Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka and University of Split, 10000 Zagreb, Croatia 6 Max-Planck-Institut für Physik, 80805 München, Germany 7 Universidad Complutense, 28040 Madrid, Spain 8 Inst. de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 9 University of Łódź, 90236 Lodz, Poland 10 Deutsches Elektronen-Synchrotron (DESY), 15738 Zeuthen, Germany 11 ETH Zurich, 8093 Zurich, Switzerland 12 Universität Würzburg, 97074 Würzburg, Germany 13 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040 Madrid, Spain 14 Technische Universität Dortmund, 44221 Dortmund, Germany 15 Inst. de Astrofísica de Andalucía (CSIC), 18080 Granada, Spain 16 Università di Padova and INFN, 35131 Padova, Italy 17 Università dell’Insubria, Como, 22100 Como, Italy 18 Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain 19 Institut de Ciències de l’Espai (IEEC-CSIC), 08193 Bellaterra, Spain 20 Japanese MAGIC Consortium, Division of Physics and Astronomy, Kyoto University, 606-8901 Kyoto, Japan 21 Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Department of Physics, University of Oulu, 900147 Oulu, Finland 22 Inst. for Nucl. Research and Nucl. Energy, 1784 Sofia, Bulgaria 23 Universitat de Barcelona, ICC, IEEC-UB, 08028 Barcelona, Spain 24 Università di Pisa, and INFN Pisa, 56126 Pisa, Italy 25 now at NASA Goddard Space Flight Center, Greenbelt MD 20771; and Department of Physics and Department of Astronomy, University of Maryland, College Park, MD 20742, USA 26 now at Ecole polytechnique fédérale de Lausanne (EPFL), 105 Lausanne, Switzerland 27 now at Department of Physics & Astronomy, UC Riverside CA 92521, USA 28 now at Finnish Centre for Astronomy with ESO (FINCA), 21500 Piikkiö, Turku, Finland 29 also at INAF-Trieste, 34131 Trieste, Italy 30 also at Instituto de Fisica Teorica, UAM/CSIC, 28049 Madrid, Spain 31 now at Stockholm University, Oskar Klein Centre for Cosmoparticle Physics, 106 91 Stockholm, Sweden 32 now at GRAPPA Institute, University of Amsterdam, 1098XH Amsterdam, The Netherlands 33 Dipartimento di Fisica, Università degli Studi di Perugia, via A. Pascoli, 06123 Perugia; INFN Sezione di Perugia, via A. Pascoli, 06123 Perugia, Italy 34 ASI Science Data Centre (ASDC), via del Politecnico snc, 00133 Roma, INAF-OAR, via Frascati 33, 00040 Monte Porzio Catone ( RM), Italy 35 INAF-IASF Palermo, via Ugo La Malfa 153, 90146 Palermo, Italy 36 Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, CH41 1LD, UK 37 Tuorla Observatory, Department of Physics and Astronomy, University of Turku, 21500 Piikkiö, Finland 38 INAF – Osservatorio Astrofisico di Torino, 10025 Pino Torinese Torino, Italy 39 Aalto University Metsähovi Radio Observatory, Metsähovintie 114, 02540 Kylmälä, Finland 40 Aalto University Department of Radio Science and Engineering, 02150 Espoo, Finland 41 Cahill Center for Astronomy & Astrophysics, Caltech, 1200 E. California Blvd, Pasadena CA 91125, USA 42 Department of Physics, Purdue University, 525 Northwestern Ave, West Lafayette IN 47907, USA 43 Institute for Astrophysical Research, Boston University, USA 44 INAF-IRA Bologna, Italy 45 Harvard-Smithsonian Center for Astrophysics, Cambridge MA 02138, USA 46 Astron. Inst., St.-Petersburg State Univ., Russia 47 Pulkovo Observatory, St.-Petersburg, Russia 48 Isaac Newton Institute of Chile, St.-Petersburg Branch, Russia 49 University of Crete, Heraklion, Greece 50 Graduate Institute of Astronomy, National Central University, 300 Jhongda Rd., Jhongli 32001, Taiwan 51 Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo, The Netherlands 52 Instituto de Astrofísica de Andalucía, CSIC, Apartado 3004, 18080 Granada, Spain 53 Abastumani Observatory, Mt. Kanobili, 0301 Abastumani, Georgia 54 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany 55 Engelhardt Astronomical Observatory, Kazan Federal University, 422526 Tatarstan, Russia 56 Instituto de Astrofisica de Canarias (IAC), 38205 San Critóbal, La Laguna, Tenerife, Spain 57 Departamento de Astrofisica, Universidad de La Laguna, 38206 , La Laguna, Tenerife, Spain 58 Sofia University, 1000 Sofia, Bulgaria 59 Department of Astronomy, University of Michigan, 817 Dennison Bldg., Ann Arbor MI 48109-1042, USA 60 Max-Planck-Institut für Radioastronomie, Auf dem Huegel 69, 53121 Bonn, Germany 61 Institut de Radio Astronomie Millimétrique, Avenida Divina Pastora 7, Local 20, 18012 Granada, Spain 62 Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, 252-5210 Kanagawa, Japan 63 Astronomical Observatory, Jagiellonian University, 30-244 Krakow, Poland Received: 22 January 2014 Accepted: 30 May 2014 Abstract Aims. Amongst more than fifty blazars detected in very high energy (VHE, E> 100 GeV) γ rays, only three belong to the subclass of flat spectrum radio quasars (FSRQs). The detection of FSRQs in the VHE range is challenging, mainly because of their soft spectra in the GeV-TeV regime. MAGIC observed PKS 1510−089 (z = 0.36) starting 2012 February 3 until April 3 during a high activity state in the high energy (HE, E> 100 MeV) γ-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 standard deviations (σ). We study the multi-frequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO, and VLBA telescopes), X-ray (Swift satellite), and HE γ-ray frequencies. Methods. We study the VHE γ-ray emission, together with the multi-frequency light curves, 43 GHz radio maps, and spectral energy distribution (SED) of the source. The quasi-simultaneous multi-frequency SED from the millimetre radio band to VHE γ rays is modelled with a one-zone inverse Compton model. We study two different origins of the seed photons for the inverse Compton scattering, namely the infrared torus and a slow sheath surrounding the jet around the Very Long Baseline Array (VLBA) core. Results. We find that the VHE γ-ray emission detected from PKS 1510−089 in 2012 February-April agrees with the previous VHE observations of the source from 2009 March-April. We find no statistically significant variability during the MAGIC observations on daily, weekly, or monthly time scales, while the other two known VHE FSRQs (3C 279 and PKS 1222+216) have shown daily scale to sub-hour variability. The γ-ray SED combining AGILE, Fermi and MAGIC data joins smoothly and shows no hint of a break. The multi-frequency light curves suggest a common origin for the millimetre radio and HE γ-ray emission, and the HE γ-ray flaring starts when the new component is ejected from the 43 GHz VLBA core and the studied SED models fit the data well. However, the fast HE γ-ray variability requires that within the modelled large emitting region, more compact regions must exist. We suggest that these observed signatures would be most naturally explained by a turbulent plasma flowing at a relativistic speed down the jet and crossing a standing conical shock.en_US
dc.format.extentp. A46en_US
dc.language.isoen_US
dc.publisherEDP Sciencesen_US
dc.relation.ispartofAstronomy & Astrophysics
dc.rights© Copyright 2018 ESO.en_US
dc.subjectScience & technologyen_US
dc.subjectPhysical sciencesen_US
dc.subjectGalaxies: activeen_US
dc.subjectGalaxies: jetsen_US
dc.subjectGamma rays: galaxiesen_US
dc.subjectQasars: individual: PKS 1510-089en_US
dc.subjectActive galactic nucleien_US
dc.subjectLarge-area telescopeen_US
dc.subjectHigh-energy emissionen_US
dc.subjectBase-line arrayen_US
dc.subjectBlazar 3C 279en_US
dc.subjectMultiwavelength observationsen_US
dc.subjectX-rayen_US
dc.subjectPolarimetric observationsen_US
dc.subjectBackground-radiationen_US
dc.subjectHigh-frequenciesen_US
dc.subjectAstronomical and space sciencesen_US
dc.subjectAstronomy & astrophysicsen_US
dc.titleMAGIC gamma-ray and multi-frequency observations of flat spectrum radio quasar PKS 1510− 089 in early 2012en_US
dc.typeArticleen_US
dc.description.versionAccepted manuscripten_US
dc.identifier.doi10.1051/0004-6361/201423484
pubs.elements-sourcemanual-entryen_US
pubs.notesEmbargo: No embargoen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Astronomyen_US
pubs.publication-statusPublisheden_US


This item appears in the following Collection(s)

Show simple item record