Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Centers & Institutes
    • Center for Polymer Studies
    • Center for Polymer Studies Papers
    • View Item
    •   OpenBU
    • Centers & Institutes
    • Center for Polymer Studies
    • Center for Polymer Studies Papers
    • View Item

    Prokaryotic Aminopeptidase Activity along a Continuous Salinity Gradient in a Hypersaline Coastal Lagoon (the Coorong, South Australia)

    Thumbnail
    License
    Copyright 2010 Pollet et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Date Issued
    2010-4-30
    Publisher Version
    10.1186/1746-1448-6-5
    Author(s)
    Pollet, Thomas
    Schapira, Mathilde
    Buscot, Marie-Jeanne
    Leterme, Sophie C
    Mitchell, James G
    Seuront, Laurent
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/3344
    Citation (published version)
    Pollet, Thomas, Mathilde Schapira, Marie-Jeanne Buscot, Sophie C Leterme, James G Mitchell, Laurent Seuront. "Prokaryotic aminopeptidase activity along a continuous salinity gradient in a hypersaline coastal lagoon (the Coorong, South Australia)" Saline Systems 6:5. (2010)
    Abstract
    The distribution and aminopeptidase activity of prokaryotes were investigated along a natural continuous salinity gradient in a hypersaline coastal lagoon, the Coorong, South Australia. The abundance of prokaryotes significantly increased from brackish to hypersaline waters and different sub-populations, defined by flow cytometry, were observed along the salinity gradient. While four sub-populations were found at each station, three additional ones were observed for 8.3% and 13.4%, suggesting a potential modification in the composition of the prokaryotic communities and/or a variation of their activity level along the salinity gradient. The aminopeptidase activity highly increased along the gradient and salinity appeared as the main factor favouring this enzymatic activity. However, while the aminopeptidase activity was dominated by free enzymes for salinities ranging from 2.6% to 13.4%, cell-attached aminopeptidase activity was predominant in more saline waters (i.e. 15.4%). Changes in substrate structure and availability, strongly related to salinity, might (i) modify patterns of both aminopeptidase activities (free and cell-associated enzymes) and (ii) obligate the prokaryotic communities to modulate rapidly their aminopeptidase activity according to the nutritive conditions available along the gradient.
    Rights
    Copyright 2010 Pollet et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Collections
    • Center for Polymer Studies Papers [3]
    • CAS: Physics: Scholarly Papers [414]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help