Show simple item record

dc.contributor.authorSorensen, Mikkel A.en_US
dc.contributor.authorHansen, Ursula B.en_US
dc.contributor.authorPerfetti, Mauroen_US
dc.contributor.authorPedersen, Kasper S.en_US
dc.contributor.authorBartolome, Elenaen_US
dc.contributor.authorSimeoni, Giovanna G.en_US
dc.contributor.authorMutka, Hannuen_US
dc.contributor.authorRols, Stephaneen_US
dc.contributor.authorJeong, Minkien_US
dc.contributor.authorZivkovic, Ivicaen_US
dc.contributor.authorRetuerto, Mariaen_US
dc.contributor.authorArauzo, Anaen_US
dc.contributor.authorBartolome, Juanen_US
dc.contributor.authorPiligkos, Stergiosen_US
dc.contributor.authorWeihe, Hognien_US
dc.contributor.authorDoerrer, Linda H.en_US
dc.contributor.authorvan Slageren, Jorisen_US
dc.contributor.authorRonnow, Henrik M.en_US
dc.contributor.authorLefmann, Kimen_US
dc.contributor.authorBendix, Jesperen_US
dc.date.accessioned2019-03-14T15:02:38Z
dc.date.available2019-03-14T15:02:38Z
dc.date.issued2018-03-29
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000428621300016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationMikkel A Sorensen, Ursula B Hansen, Mauro Perfetti, Kasper S Pedersen, Elena Bartolome, Giovanna G Simeoni, Hannu Mutka, Stephane Rols, Minki Jeong, Ivica Zivkovic, Maria Retuerto, Ana Arauzo, Juan Bartolome, Stergios Piligkos, Hogni Weihe, Linda H Doerrer, Joris van Slageren, Henrik M Ronnow, Kim Lefmann, Jesper Bendix. 2018. "Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet." NATURE COMMUNICATIONS, Volume 9, pp. ? - ? (9). https://doi.org/10.1038/s41467-018-03706-x
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/2144/34287
dc.description.abstractTotal control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin–orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C₄) to pseudo-linear (D₄𝒅) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting.en_US
dc.description.sponsorshipM.A.S., U.B.H., K.L., and J.Be. acknowledge financial support from the Danish Research Councils for Independent Research (12-125226). M.A.S., U.B.H., M.R, and K.L. acknowledge DANSCATT for financial support for the neutron scattering experiments. For the experiments conducted at FRM II, this project has received funding from the European Union's 7th Framework Programme for research, technological development and demonstration under the NMI3-II Grant number 283883. M.A.S. thanks the Oticon Foundation (16-2669), and the Augustinus Foundation (16-2917) for financial support in relation to a research stay at Institut fur Physikalische Chemie, Universitat Stuttgart, Germany. M.P. and J.v.S. thank the DFG for funding (SL104/5-1). K.S.P. thanks the Danish Research Council for Independent Research for a DFF-Sapere Aude Research Talent grant (4090-00201). E.B., A.A, and, J.Ba. acknowledge the financial support of Spanish MINECO project MAT2017-83468-R. M.J. acknowledges the Swiss National Science Foundation. M.P. thanks Prof. Roberta Sessoli and the Laboratory of Molecular Magnetism at the University of Florence for the use of the cantilever torque magnetometer. (12-125226 - Danish Research Councils for Independent Research; DANSCATT; 283883 - European Union's 7th Framework Programme for research, technological development and demonstration under the NMI3-II; 16-2669 - Oticon Foundation; 16-2917 - Augustinus Foundation; SL104/5-1 - DFG; 4090-00201 - Danish Research Council for Independent Research; MAT2017-83468-R - Spanish MINECO; Swiss National Science Foundation)en_US
dc.format.extent9 p.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.ispartofNature Communications
dc.rightsAttribution 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & technologyen_US
dc.subjectMultidisciplinary sciencesen_US
dc.subjectSingle-ion magnetsen_US
dc.subjectInelastic neutron-scatteringen_US
dc.subjectTorque magnetometryen_US
dc.subjectSpin qubitsen_US
dc.subjectMagnetizationen_US
dc.subjectAnisotropyen_US
dc.subjectRelaxationen_US
dc.subjectComplexesen_US
dc.subjectSymmetryen_US
dc.subjectBarrieren_US
dc.titleChemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagneten_US
dc.typeArticleen_US
dc.description.versionPublished versionen_US
dc.identifier.doi10.1038/s41467-018-03706-x
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: 12 monthsen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Chemistryen_US
pubs.publication-statusPublisheden_US
dc.identifier.orcid0000-0002-2437-6374 (Doerrer, Linda H)


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International