Show simple item record

dc.contributor.authorBukov, Marinen_US
dc.contributor.authorKolodrubetz, Michaelen_US
dc.contributor.authorPolkovnikov, Anatolien_US
dc.date.accessioned2019-06-11T13:09:50Z
dc.date.available2019-06-11T13:09:50Z
dc.date.issued2016-03-21
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000372726900005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationMarin Bukov, Michael Kolodrubetz, Anatoli Polkovnikov. 2016. "Schrieffer-Wolff Transformation for Periodically Driven Systems: Strongly Correlated Systems with Artificial Gauge Fields." PHYSICAL REVIEW LETTERS, Volume 116, Issue 12, pp. ? - ? (6). https://doi.org/10.1103/PhysRevLett.116.125301
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.urihttps://hdl.handle.net/2144/35965
dc.description.abstractWe generalize the Schrieffer-Wolff transformation to periodically driven systems using Floquet theory. The method is applied to the periodically driven, strongly interacting Fermi-Hubbard model, for which we identify two regimes resulting in different effective low-energy Hamiltonians. In the nonresonant regime, we realize an interacting spin model coupled to a static gauge field with a nonzero flux per plaquette. In the resonant regime, where the Hubbard interaction is a multiple of the driving frequency, we derive an effective Hamiltonian featuring doublon association and dissociation processes. The ground state of this Hamiltonian undergoes a phase transition between an ordered phase and a gapless Luttinger liquid phase. One can tune the system between different phases by changing the amplitude of the periodic drive.en_US
dc.description.sponsorshipWe thank L. D'Alessio, E. Altman, W. Bakr, E. Demler, M. Eckstein, A. Grushin, M. Heyl, D. Huse, A. Iaizzi, G. Jotzu, R. Kaul, S. Kourtis, M. Piraud, A. Sandvik, and R. Singh for insightful and interesting discussions. We are especially grateful to M. Dolfi and all contributors to the ALPS project [77,78] for developing the ALPS MPS and DMRG tools used in this work. We thank A. Rosch for pointing out to us the potential connection between the HFE and the SWT. This work was supported by AFOSR FA9550-13-1-0039, NSF DMR-1506340, and ARO W911NF1410540. M. K. was supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. (FA9550-13-1-0039 - AFOSR; DMR-1506340 - NSF; W911NF1410540 - ARO; Laboratory Directed Research and Development (LDRD) from Berkeley Lab; DE-AC02-05CH11231 - Office of Science, of the U.S. Department of Energy)en_US
dc.format.extent6 p.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherAMER PHYSICAL SOCen_US
dc.relation.ispartofPHYSICAL REVIEW LETTERS
dc.subjectScience & technologyen_US
dc.subjectPhysical sciencesen_US
dc.subjectPhysics, multidisciplinaryen_US
dc.subjectPhysicsen_US
dc.subjectTriangular latticeen_US
dc.subjectOptical latticeen_US
dc.subjectMagnetic fieldsen_US
dc.subjectUltracold atomsen_US
dc.subjectHubbard-modelen_US
dc.subjectLocalizationen_US
dc.subjectChainen_US
dc.titleSchrieffer-Wolff Transformation for periodically driven systems: strongly correlated systems with artificial gauge fieldsen_US
dc.typeArticleen_US
dc.description.versionAccepted manuscripten_US
dc.identifier.doi10.1103/PhysRevLett.116.125301
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Physicsen_US
pubs.publication-statusPublisheden_US
dc.identifier.orcid0000-0002-5549-7400 (Polkovnikov, Anatoli)
dc.identifier.mycv54841


This item appears in the following Collection(s)

Show simple item record