Show simple item record

dc.contributor.authorBukov, Marinen_US
dc.contributor.authorD'Alessio, Lucaen_US
dc.contributor.authorPolkovnikov, Anatolien_US
dc.date.accessioned2019-06-11T18:01:53Z
dc.date.available2019-06-11T18:01:53Z
dc.date.issued2015-03-01
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000357583900001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationMarin Bukov, Luca D'Alessio, Anatoli Polkovnikov. 2015. "Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering." ADVANCES IN PHYSICS, Volume 64, Issue 2, pp. 139 - 226 (88). https://doi.org/10.1080/00018732.2015.1055918
dc.identifier.issn0001-8732
dc.identifier.issn1460-6976
dc.identifier.urihttps://hdl.handle.net/2144/35970
dc.description.abstractWe give a general overview of the high-frequency regime in periodically driven systems and identify three distinct classes of driving protocols in which the infinite-frequency Floquet Hamiltonian is not equal to the time-averaged Hamiltonian. These classes cover systems, such as the Kapitza pendulum, the Harper–Hofstadter model of neutral atoms in a magnetic field, the Haldane Floquet Chern insulator and others. In all setups considered, we discuss both the infinite-frequency limit and the leading finite-frequency corrections to the Floquet Hamiltonian. We provide a short overview of Floquet theory focusing on the gauge structure associated with the choice of stroboscopic frame and the differences between stroboscopic and non-stroboscopic dynamics. In the latter case, one has to work with dressed operators representing observables and a dressed density matrix. We also comment on the application of Floquet Theory to systems described by static Hamiltonians with well-separated energy scales and, in particular, discuss parallels between the inverse-frequency expansion and the Schrieffer–Wolff transformation extending the latter to driven systems.en_US
dc.description.sponsorshipThis work was supported by AFOSR FA9550-13-1-0039, ARO W911NF1410540, NSF DMR-1206410, and BSF 2010318. (FA9550-13-1-0039 - AFOSR; W911NF1410540 - ARO; DMR-1206410 - NSF; 2010318 - BSF)en_US
dc.format.extentp. 139 - 226en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherTAYLOR & FRANCIS LTDen_US
dc.relation.ispartofADVANCES IN PHYSICS
dc.subjectScience & technologyen_US
dc.subjectPhysical sciencesen_US
dc.subjectPhysics, condensed matteren_US
dc.subjectFloquet theoryen_US
dc.subjectEffective Hamiltonianen_US
dc.subjectMagnus expansionen_US
dc.subjectHigh-frequency limiten_US
dc.subjectQuantum simulationen_US
dc.subjectDynamical stabilization and localizationen_US
dc.subjectArtificial gauge fieldsen_US
dc.subjectTopological insulatorsen_US
dc.subjectSpin systemsen_US
dc.subjectMany-body systemen_US
dc.subjectArtificial magnetic-fieldsen_US
dc.subjectOptical latticesen_US
dc.subjectCold atomsen_US
dc.subjectQuantum-systemsen_US
dc.subjectThermodynamic limiten_US
dc.subjectTriangular latticeen_US
dc.subjectElectric-fielden_US
dc.subjectWave-packetsen_US
dc.subjectLocalizationen_US
dc.subjectCondensed matter physicsen_US
dc.subjectQuantum physicsen_US
dc.subjectFluids & plasmasen_US
dc.titleUniversal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineeringen_US
dc.typeArticleen_US
dc.description.versionAccepted manuscripten_US
dc.identifier.doi10.1080/00018732.2015.1055918
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Physicsen_US
pubs.publication-statusPublisheden_US
dc.identifier.orcid0000-0002-5549-7400 (Polkovnikov, Anatoli)
dc.identifier.mycv41243


This item appears in the following Collection(s)

Show simple item record