Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Cluster truncated Wigner approximation in strongly interacting systems

    Thumbnail
    Date Issued
    2018-08-01
    Publisher Version
    10.1016/j.aop.2018.06.001
    Author(s)
    Wurtz, Jonathan
    Polkovnikov, Anatoli
    Sels, Dries
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/35975
    Version
    Accepted manuscript
    Citation (published version)
    Jonathan Wurtz, Anatoli Polkovnikov, Dries Sels. 2018. "Cluster truncated Wigner approximation in strongly interacting systems." ANNALS OF PHYSICS, Volume 395, pp. 341 - 365 (25). https://doi.org/10.1016/j.aop.2018.06.001
    Abstract
    We present a general method by which linear quantum Hamiltonian dynamics with exponentially many degrees of freedom is replaced by approximate classical nonlinear dynamics with the number of degrees of freedom (phase space dimensionality) scaling polynomially in the system size. This method is based on generalization of the truncated Wigner approximation (TWA) to a higher dimensional phase space, where phase space variables are associated with a complete set of quantum operators spanning finite size clusters. The method becomes asymptotically exact with increasing cluster size. The crucial feature of TWA is fluctuating initial conditions, which we approximate by a Gaussian distribution. We show that such fluctuations dramatically increase accuracy of TWA over traditional cluster mean-field approximations. In this way we can treat on equal footing quantum and thermal fluctuations as well as compute entanglement and various equal and non-equal time correlation functions. The main limitation of the method is exponential scaling of the phase space dimensionality with the cluster size, which can be significantly reduced by using the language of Schwinger bosons and can likely be further reduced by truncating the local Hilbert space variables. We demonstrate the power of this method analyzing dynamics in various spin chains with and without disorder and show that we can capture such phenomena as long time hydrodynamic relaxation, many-body localization and the ballistic spread of entanglement.
    Collections
    • CAS: Physics: Scholarly Papers [414]
    • BU Open Access Articles [4757]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help