Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Instance segmentation and material classification in X-ray computed tomography

    Thumbnail
    Date Issued
    2019
    Author(s)
    Hao, Boran
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/36044
    Abstract
    Over the past thirty years, X-Ray Computed Tomography (CT) has been widely used in security checking due to its high resolution and fully 3-d construction. Designing object segmentation and classification algorithms based on reconstructed CT intensity data will help accurately locate and classify the potential hazardous articles in luggage. Proposal-based deep networks have been successful recently in segmentation and recognition tasks. However, they require large amount of labeled training images, which are hard to obtain in CT research. This thesis develops a non-proposal 3-d instance segmentation and classification structure based on smoothed fully convolutional networks (FCNs), graph-based spatial clustering and ensembling kernel SVMs using volumetric texture features, which can be trained on limited and highly unbalanced CT intensity data. Our structure will not only significantly accelerate the training convergence in FCN, but also efficiently detect and remove the outlier voxels in training data and guarantee the high and stable material classification performance. We demonstrate the performance of our approach on experimental volumetric images of containers obtained using a medical CT scanner.
    Collections
    • Boston University Theses & Dissertations [6752]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help