Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Structural breaks in time series

    Thumbnail
    Date Issued
    2019-12-06
    Publisher Version
    10.1093/acrefore/9780190625979.013.179
    Author(s)
    Casini, Alessandro
    Perron, Pierre
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Embargoed until:
    2021-03-26
    Permanent Link
    https://hdl.handle.net/2144/36593
    Version
    Accepted manuscript
    Citation (published version)
    Casini, A., & Perron, P. (2019, March 26). Structural Breaks in Time Series. Oxford Research Encyclopedia of Economics and Finance. https://doi.org/10.1093/acrefore/9780190625979.013.179
    Abstract
    This article covers methodological issues related to estimation, testing, and computation for models involving structural changes. Our aim is to review developments as they relate to econometric applications based on linear models. Substantial advances have been made to cover models at a level of generality that allow a host of interesting practical applications. These include models with general stationary regressors and errors that can exhibit temporal dependence and heteroskedasticity, models with trending variables and possible unit roots and cointegrated models, among others. Advances have been made pertaining to computational aspects of constructing estimates, their limit distributions, tests for structural changes, and methods to determine the number of changes present. A variety of topics are covered including recent developments: testing for common breaks, models with endogenous regressors (emphasizing that simply using least-squares is preferable over instrumental variables methods), quantile regressions, methods based on Lasso, panel data models, testing for changes in forecast accuracy, factors models, and methods of inference based on a continuous records asymptotic framework. Our focus is on the so-called off-line methods whereby one wants to retrospectively test for breaks in a given sample of data and form confidence intervals about the break dates. The aim is to provide the readers with an overview of methods that are of direct use in practice as opposed to issues mostly of theoretical interest.
    Rights
    Reproduced by permission of Oxford University Press https://global.oup.com/academic/rights/permissions/autperm/?cc=gb&lang=en&. DOI: 10.1093/acrefore/9780190625979.013.179
    Collections
    • BU Open Access Articles [3664]
    • CAS: Economics: Scholarly Papers [187]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help