Show simple item record

dc.contributor.advisorRitter, Brigitteen_US
dc.contributor.advisorSymes, Karenen_US
dc.contributor.authorPittala, Keerthanaen_US
dc.date.accessioned2019-07-22T15:12:41Z
dc.date.available2019-07-22T15:12:41Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/2144/36618
dc.description.abstractMalaria, a parasitic disease, was commonly associated with third world countries, with the highest mortality in nations in Sub-Saharan Africa and Asia. But, travel increases the risk of spread to more temperate regions, such as Western Europe and the United States where Malaria has been successfully eradicated. In the past 40 years, with a better understanding of the mosquito vector and the parasite itself, advancements in treatment and containment have been made. Understanding the parasite as well as its pathogenesis is vital in formulating effective treatments. Following the incidences of Plasmodium falciparum, knowlesi, vivax, malaria, ovale, and less commonly cynomolgi and simium over time as well as region helps to better illuminate the methods of Malarial transmission, interplay with environmental factors, and methods of treatment. While each species of parasite is similar in terms of mode of infection, they differ slightly when considering incubation periods and diagnostic and treatment techniques. Many drugs have been developed to treat Malaria and include Chloroquine, Primaquine, and derivatives of Artemisinin. While the discovery of these drugs was a significant breakthrough that dramatically reduced incidence and deaths caused by Malaria, improper administration of treatment has led to a recent increase in strains of the parasite which have developed drug resistance to Artemisinin Combination Therapies (ACT’s). Of these species, P. falciparum and P. vivax, the most common causes of malaria, are also so far the only species to have developed drug resistance. The goal of this thesis is to explore popular interventions, both drug and public health based, and how research focus has now shifted to better understanding the mechanism of parasitic drug resistance, specifically linked to mutations found in the Kelch protein in P. Falciparum. The recent findings of Kelch mutations pave the way towards addressing the growing problem of anti-Malarial resistance.en_US
dc.language.isoen_US
dc.rightsAttribution 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectMedicineen_US
dc.subjectArtemisininen_US
dc.subjectKelchen_US
dc.subjectMalariaen_US
dc.subjectPlasmodium falciparumen_US
dc.titleMalarial pathogenesis and interventions in Kelch mediated Artemisinin resistance in Plasmodium falciparumen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2019-06-14T16:03:21Z
etd.degree.nameMaster of Scienceen_US
etd.degree.levelmastersen_US
etd.degree.disciplineMedical Sciencesen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International