Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    The hippocampus and entorhinal cortex map events across space and time

    Thumbnail
    License
    Attribution 4.0 International
    Date Issued
    2019
    Author(s)
    Bladon, John Hodgetts
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/36653
    Abstract
    The medial temporal lobe supports the encoding of new facts and experiences, and organizes them so that we can infer relationships and make unique associations during new encounters. Evidence from studies on humans and animals suggest that the hippocampus is specifically required for our ability to form these internal representations of the world. The mechanism by which the hippocampus performs this function remains unclear, but electrophysiological recordings in the hippocampus support a general model. One component of this model suggests that the cortex represents places, times, and events separately, and then the hippocampus generates conjunctive representations that connect the three. According to this hypothesis, the hippocampus binds places and events to an existing relational structure. This dissertation explores how item and place associations develop within cortex, and then examines the relational structure that organizes these events within the hippocampus. The first study suggests that contrary to previous models, events and places are bound together outside of the hippocampus in the entorhinal cortex and perirhinal cortex. The second study shows that this relational scaffold may be embodied by a continually changing code that permits both the association and separation of information across the continuum of time. The final study suggests that the hippocampus and entorhinal cortex contain qualitatively different time codes that may act in a complementary fashion to bind events and places and relate them across time. Overall, these studies support a theory wherein time is encoded in a range of brain regions that also contain conjunctive item and position information. In these regions, conjunctive representations of items, places, and times are organized not only by their perceptual similarity but also their temporal proximity.
    Rights
    Attribution 4.0 International
    Collections
    • Boston University Theses & Dissertations [6897]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help