Show simple item record

dc.contributor.authorTang, Jianboen_US
dc.contributor.authorErdener, Sefik Evrenen_US
dc.contributor.authorLi, Baoqiangen_US
dc.contributor.authorFu, Buyinen_US
dc.contributor.authorSakadzic, Savaen_US
dc.contributor.authorCarp, Stefan A.en_US
dc.contributor.authorLee, Jonghwanen_US
dc.contributor.authorBoas, David A.en_US
dc.coverage.spatialGermanyen_US
dc.date2017-07-05
dc.date.accessioned2019-09-03T19:48:02Z
dc.date.available2019-09-03T19:48:02Z
dc.date.issued2018-02
dc.identifier.citationJianbo Tang, Sefik Evren Erdener, Baoqiang Li, Buyin Fu, Sava Sakadzic, Stefan A Carp, Jonghwan Lee, David A Boas. 2018. "Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography.." J Biophotonics, Volume 11, Issue 2, https://doi.org/10.1002/jbio.201700070
dc.identifier.issn1864-0648
dc.identifier.urihttps://hdl.handle.net/2144/37645
dc.descriptionPublished in final edited form as: J Biophotonics. 2018 February ; 11(2): . doi:10.1002/jbio.201700070.en_US
dc.description.abstractQuantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering-optical coherence tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained three-dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10-6  mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.en_US
dc.description.sponsorshipR01 NS091230 - NINDS NIH HHS; R01 EB021018 - NIBIB NIH HHS; P01 NS055104 - NINDS NIH HHS; S10 RR023043 - NCRR NIH HHS; P41 EB015896 - NIBIB NIH HHS; R01 MH111359 - NIMH NIH HHSen_US
dc.description.urihttps://www.ncbi.nlm.nih.gov/pubmed/28700129
dc.languageeng
dc.relation.ispartofJ Biophotonics
dc.subjectBlood flow and radial profileen_US
dc.subjectDynamic light scattering optical coherence tomographyen_US
dc.subjectShear-induced diffusion of RBCen_US
dc.subjectAlgorithmsen_US
dc.subjectAnimalsen_US
dc.subjectBiomechanical phenomenaen_US
dc.subjectDiffusionen_US
dc.subjectDynamic light scatteringen_US
dc.subjectErythrocytesen_US
dc.subjectFemaleen_US
dc.subjectMechanical phenomenaen_US
dc.subjectMiceen_US
dc.subjectTomography, optical coherenceen_US
dc.subjectOptoelectronics & photonicsen_US
dc.titleShear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomographyen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/jbio.201700070
pubs.elements-sourcepubmeden_US
pubs.notesEmbargo: No embargoen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Engineeringen_US
pubs.organisational-groupBoston University, College of Engineering, Department of Biomedical Engineeringen_US
pubs.publication-statusPublisheden_US
dc.identifier.orcid0000-0002-6709-7711 (Boas, David A)
dc.description.oaversionAccepted manuscript
dc.identifier.mycv250371


This item appears in the following Collection(s)

Show simple item record