Show simple item record

dc.contributor.authorTang, Jianboen_US
dc.contributor.authorErdener, Sefik Evrenen_US
dc.contributor.authorLi, Baoqiangen_US
dc.contributor.authorFu, Buyinen_US
dc.contributor.authorSakadzic, Savaen_US
dc.contributor.authorCarp, Stefan A.en_US
dc.contributor.authorLee, Jonghwanen_US
dc.contributor.authorBoas, David A.en_US
dc.contributor.editorLuo, Q.en_US
dc.contributor.editorDing, J.en_US
dc.coverage.spatialSan Francisco, CAen_US
dc.date.accessioned2019-09-04T15:58:13Z
dc.date.available2019-09-04T15:58:13Z
dc.date.issued2018-01-01
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000454218800011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationJianbo Tang, Sefik Evren Erdener, Baoqiang Li, Buyin Fu, Sava Sakadzic, Stefan A. Carp, Jonghwan Lee, David A. Boas, "Measurement of shearinduced diffusion of red blood cells using dynamic light scattering-optical coherence tomography," Proc. SPIE 10481, Neural Imaging and Sensing 2018, 104811N (12 February 2018); https://doi.org/10.1117/12.2290345
dc.identifier.issn0277-786X
dc.identifier.issn1996-756X
dc.identifier.urihttps://hdl.handle.net/2144/37657
dc.description.abstractDynamic Light Scattering-Optical Coherence Tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained 3D volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile, and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~ 0.1 to 0.5 × 10-6 mm2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.en_US
dc.description.urihttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/10481/2290345/Measurement-of-shear-induced-diffusion-of-red-blood-cells-using/10.1117/12.2290345.full
dc.description.urihttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/10481/2290345/Measurement-of-shear-induced-diffusion-of-red-blood-cells-using/10.1117/12.2290345.full
dc.languageEnglish
dc.publisherSPIE-INT SOC OPTICAL ENGINEERINGen_US
dc.relation.ispartofNEURAL IMAGING AND SENSING 2018
dc.rights© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.en_US
dc.subjectLife Sciences & Biomedicineen_US
dc.subjectNeuroimagingen_US
dc.subjectOpticsen_US
dc.subjectRadiology, nuclear medicine & medical imagingen_US
dc.subjectNeurosciences & neurologyen_US
dc.subjectBlood flow and radial profileen_US
dc.subjectShear-induced diffusion of RBCen_US
dc.subjectDynamic light scattering optical coherence tomographyen_US
dc.titleMeasurement of shear-induced diffusion of red blood cells using dynamic light scattering-optical coherence tomographyen_US
dc.typeConference materialsen_US
dc.identifier.doi10.1117/12.2290345
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Engineeringen_US
pubs.organisational-groupBoston University, College of Engineering, Department of Biomedical Engineeringen_US
pubs.publication-statusPublisheden_US
dc.identifier.orcid0000-0002-6709-7711 (Boas, David A)
dc.description.oaversionPublished version
dc.identifier.mycv415944


This item appears in the following Collection(s)

Show simple item record