Show simple item record

dc.contributor.authorSevenler, Derinen_US
dc.contributor.authorAvci, Oguzhanen_US
dc.contributor.authorUnlu, M. Selimen_US
dc.date.accessioned2019-09-06T18:20:19Z
dc.date.available2019-09-06T18:20:19Z
dc.date.issued2017-06-01
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000404737200015&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationDerin Sevenler, Oguzhan Avci, M Selim Unlu. 2017. "Quantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticles." BIOMEDICAL OPTICS EXPRESS, Volume 8, Issue 6, pp. 2976 - 2989 (14). https://doi.org/10.1364/BOE.8.002976
dc.identifier.issn2156-7085
dc.identifier.urihttps://hdl.handle.net/2144/37745
dc.description.abstractThe sensitive detection and quantitative measurement of biological nanoparticles such as viruses or exosomes is of growing importance in biology and medicine since these structures are implicated in many biological processes and diseases. Interferometric reflectance imaging is a label-free optical biosensing method which can directly detect individual biological nanoparticles when they are immobilized onto a protein microarray. Previous efforts to infer bio-nanoparticle size and shape have relied on empirical calibration using a ‘ruler’ of particle samples of known size, which was inconsistent and qualitative. Here, we present a mechanistic physical explanation and experimental approach by which interferometric reflectance imaging may be used to not only detect but also quantitatively measure bio-nanoparticle size and shape. We introduce a comprehensive optical model that can quantitatively simulate the scattering of arbitrarily-shaped nanoparticles such as rod-shaped or filamentous virions. Finally, we optimize the optical design for the detection and quantitative measurement of small and low-index bio-nanoparticles immersed in water.en_US
dc.description.sponsorshipNational Institute of Allergy and Infectious Diseases (NIAID) (R21Al113715). (R21Al113715 - National Institute of Allergy and Infectious Diseases (NIAID))en_US
dc.format.extentp. 2976 - 2989en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherOPTICAL SOC AMERen_US
dc.relation.ispartofBIOMEDICAL OPTICS EXPRESS
dc.subjectScience & technologyen_US
dc.subjectLife sciences & biomedicineen_US
dc.subjectPhysical sciencesen_US
dc.subjectBiochemical research methodsen_US
dc.subjectOpticsen_US
dc.subjectRadiology, nuclear medicine & medical imagingen_US
dc.subjectBiochemistry & molecular biologyen_US
dc.subjectHuman-immunodeficiency-virusen_US
dc.subjectLabel-free detectionen_US
dc.subjectSingle nanoparticlesen_US
dc.subjectExtracellular vesiclesen_US
dc.subjectField interferometryen_US
dc.subjectHigh-throughputen_US
dc.subjectExosomesen_US
dc.subjectMicroscopyen_US
dc.subjectMorphologyen_US
dc.subjectMicroparticlesen_US
dc.subjectInterferometric imagingen_US
dc.subjectBiological sensing and sensorsen_US
dc.subjectScattering, particlesen_US
dc.subjectThin film devices and applicationsen_US
dc.titleQuantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticlesen_US
dc.typeArticleen_US
dc.description.versionPublished versionen_US
dc.identifier.doi10.1364/BOE.8.002976
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Engineeringen_US
pubs.organisational-groupBoston University, College of Engineering, Department of Electrical & Computer Engineeringen_US
pubs.publication-statusPublisheden_US
dc.identifier.orcid0000-0002-8594-892X (Unlu, M Selim)
dc.identifier.mycv239432


This item appears in the following Collection(s)

Show simple item record