Show simple item record

dc.contributor.authorChamon, C.en_US
dc.contributor.authorMucciolo, E. R.en_US
dc.contributor.authorRuckenstein, A. E.en_US
dc.contributor.authorYang, Z-Cen_US
dc.date.accessioned2019-09-19T15:31:10Z
dc.date.available2019-09-19T15:31:10Z
dc.date.issued2017-05-12
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000401223200001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationC. Chamon, E.R. Mucciolo, A.E. Ruckenstein, Z.-.C. Yang. 2017. "Quantum vertex model for reversible classical computing." NATURE COMMUNICATIONS, Volume 8, pp. ? - ? (11). https://doi.org/10.1038/ncomms15303
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/2144/37933
dc.description.abstractMappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without ‘learning’ to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.en_US
dc.format.extent11 p.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherNATURE PUBLISHING GROUPen_US
dc.relation.ispartofNATURE COMMUNICATIONS
dc.rightsAttribution 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectScience & technologyen_US
dc.subjectMultidisciplinary sciencesen_US
dc.subjectGlassy dynamicsen_US
dc.subjectSpin modelen_US
dc.subjectOptimizationen_US
dc.subjectComputationen_US
dc.subjectInformationen_US
dc.subjectMD multidisciplinaryen_US
dc.titleQuantum vertex model for reversible classical computingen_US
dc.typeArticleen_US
dc.description.versionPublished versionen_US
dc.identifier.doi10.1038/ncomms15303
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Physicsen_US
pubs.publication-statusPublisheden_US
dc.identifier.orcid0000-0002-8275-2024 (Chamon, C)
dc.identifier.mycv51953


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International