Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Measuring the signal-to-noise ratio of a neuron

    Thumbnail
    Date Issued
    2015-06-09
    Publisher Version
    10.1073/pnas.1505545112
    Author(s)
    Czanner, Gabriela
    Sarma, Sridevi V.
    Ba, Demba
    Eden, Uri T.
    Wu, Wei
    Eskandar, Emad
    Lim, Hubert H.
    Temereanca, Simona
    Suzuki, Wendy A.
    Brown, Emery N.
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/37974
    Version
    Published version
    Citation (published version)
    Gabriela Czanner, Sridevi V Sarma, Demba Ba, Uri T Eden, Wei Wu, Emad Eskandar, Hubert H Lim, Simona Temereanca, Wendy A Suzuki, Emery N Brown. 2015. "Measuring the signal-to-noise ratio of a neuron." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, Volume 112, Issue 23, pp. 7141 - 7146 (6). https://doi.org/10.1073/pnas.1505545112
    Abstract
    The signal-to-noise ratio (SNR), a commonly used measure of fidelity in physical systems, is defined as the ratio of the squared amplitude or variance of a signal relative to the variance of the noise. This definition is not appropriate for neural systems in which spiking activity is more accurately represented as point processes. We show that the SNR estimates a ratio of expected prediction errors and extend the standard definition to one appropriate for single neurons by representing neural spiking activity using point process generalized linear models (PP-GLM). We estimate the prediction errors using the residual deviances from the PP-GLM fits. Because the deviance is an approximate χ2 random variable, we compute a bias-corrected SNR estimate appropriate for single-neuron analysis and use the bootstrap to assess its uncertainty. In the analyses of four systems neuroscience experiments, we show that the SNRs are −10 dB to −3 dB for guinea pig auditory cortex neurons, −18 dB to −7 dB for rat thalamic neurons, −28 dB to −14 dB for monkey hippocampal neurons, and −29 dB to −20 dB for human subthalamic neurons. The new SNR definition makes explicit in the measure commonly used for physical systems the often-quoted observation that single neurons have low SNRs. The neuron’s spiking history is frequently a more informative covariate for predicting spiking propensity than the applied stimulus. Our new SNR definition extends to any GLM system in which the factors modulating the response can be expressed as separate components of a likelihood function.
    Collections
    • CAS: Mathematics & Statistics: Scholarly Works [333]
    • BU Open Access Articles [4757]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help