Show simple item record

dc.contributor.authorOtchy, Timothyen_US
dc.contributor.authorGillis, Winthrop F.en_US
dc.contributor.authorLissandrello, Charles A.en_US
dc.contributor.authorShen, Junen_US
dc.contributor.authorPearre, Ben W.en_US
dc.contributor.authorMertiri, Alketen_US
dc.contributor.authorDeku, Felixen_US
dc.contributor.authorCogan, Stuarten_US
dc.contributor.authorHolinski, Bradley J.en_US
dc.contributor.authorChew, Daniel J.en_US
dc.contributor.authorWhite, Alice E.en_US
dc.contributor.authorGardner, Timothyen_US
dc.date.accessioned2019-09-20T18:45:41Z
dc.date.available2019-09-20T18:45:41Z
dc.date.issued2018-01-08
dc.identifier.citationT. Otchy, W. Gillis, C. Lissandrello, J. Shen, B. Pearre, A. Mertiri, F. Deku, S. Cogan, B. Holinski, D. Chew, A. White, T. Gardner. 2018. "Carbon Fiber on Polyimide Ultra-Microelectrodes." Journal of Neural Engineering, Volume 15, Issue 1, https://doi.org/10.1088/1741-2552/aa8c88
dc.identifier.issn1741-2552
dc.identifier.urihttps://hdl.handle.net/2144/37975
dc.description.abstractOBJECTIVE: Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. APPROACH: Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. MAIN RESULTS: Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. SIGNIFICANCE: Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated manufacturing process.en_US
dc.description.urihttp://biorxiv.org/content/biorxiv/early/2017/04/04/123281.full.pdf
dc.description.urihttp://biorxiv.org/content/biorxiv/early/2017/04/04/123281.full.pdf
dc.description.urihttp://biorxiv.org/content/biorxiv/early/2017/04/04/123281.full.pdf
dc.description.urihttp://biorxiv.org/content/biorxiv/early/2017/04/04/123281.full.pdf
dc.description.urihttp://biorxiv.org/content/biorxiv/early/2017/04/04/123281.full.pdf
dc.description.urihttp://biorxiv.org/content/biorxiv/early/2017/04/04/123281.full.pdf
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.ispartofJournal of Neural Engineering
dc.subjectScience & technologyen_US
dc.subjectLife sciences & biomedicineen_US
dc.subjectEngineering, biomedicalen_US
dc.subjectNeurosciencesen_US
dc.subjectEngineeringen_US
dc.subjectNeurosciences & neurologyen_US
dc.subjectNeural interfaceen_US
dc.subjectElectrophysiologyen_US
dc.subjectMicroelectrodeen_US
dc.subjectCarbon fiberen_US
dc.subjectVagus nerve-stimulationen_US
dc.subjectPeripheral-nerveen_US
dc.subjectSelective stimulationen_US
dc.subjectNeural stimulationen_US
dc.subjectBrain-tissueen_US
dc.subjectElectrodeen_US
dc.subjectArrayen_US
dc.subjectInterfaceen_US
dc.subjectMusclesen_US
dc.subjectBiomedical engineeringen_US
dc.subjectClinical sciencesen_US
dc.subjectNeurosciencesen_US
dc.titleCarbon fiber on polyimide ultra-microelectrodesen_US
dc.typeArticleen_US
dc.description.versionPublished versionen_US
dc.identifier.doi10.1088/1741-2552/aa8c88
dc.description.embargo2020-01-08
pubs.elements-sourcemanual-entryen_US
pubs.notesWaiver: At publisher's requesten_US
pubs.notesWaiver: At publisher's requesten_US
pubs.notesEmbargo: 24 monthsen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Biologyen_US
pubs.organisational-groupBoston University, College of Engineeringen_US
pubs.organisational-groupBoston University, College of Engineering, Department of Mechanical Engineeringen_US
pubs.publication-statusPublisheden_US
dc.description.oaversionOther
dc.identifier.mycv247631


This item appears in the following Collection(s)

Show simple item record