Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Behavior subtraction

    Thumbnail
    Date Issued
    2012-05-15
    Publisher Version
    10.1109/TIP.2012.2199326
    Author(s)
    Jodoin, Pierre-Marc
    Saligrama, Venkatesh
    Konrad, Janusz
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/38500
    Version
    Accepted manuscript
    Citation (published version)
    Pierre-Marc Jodoin, Venkatesh Saligrama, Janusz Konrad. 2012. "Behavior subtraction." IEEE Transactions on Image Processing, Volume 21, Issue 9, pp. 4244 - 4255. https://doi.org/10.1109/TIP.2012.2199326
    Abstract
    Background subtraction has been a driving engine for many computer vision and video analytics tasks. Although its many variants exist, they all share the underlying assumption that photometric scene properties are either static or exhibit temporal stationarity. While this works in many applications, the model fails when one is interested in discovering changes in scene dynamics instead of changes in scene's photometric properties; the detection of unusual pedestrian or motor traffic patterns are but two examples. We propose a new model and computational framework that assume the dynamics of a scene, not its photometry, to be stationary, i.e., a dynamic background serves as the reference for the dynamics of an observed scene. Central to our approach is the concept of an event, which we define as short-term scene dynamics captured over a time window at a specific spatial location in the camera field of view. Unlike in our earlier work, we compute events by time-aggregating vector object descriptors that can combine multiple features, such as object size, direction of movement, speed, etc. We characterize events probabilistically, but use low-memory, low-complexity surrogates in a practical implementation. Using these surrogates amounts to behavior subtraction, a new algorithm for effective and efficient temporal anomaly detection and localization. Behavior subtraction is resilient to spurious background motion, such as due to camera jitter, and is content-blind, i.e., it works equally well on humans, cars, animals, and other objects in both uncluttered and highly cluttered scenes. Clearly, treating video as a collection of events rather than colored pixels opens new possibilities for video analytics.
    Collections
    • ENG: Electrical and Computer Engineering: Scholarly Papers [257]
    • BU Open Access Articles [3730]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help