Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Forecasting in the presence of in and out of sample breaks

    Thumbnail
    Date Issued
    2018
    Author(s)
    Xu, Jiawen
    Perron, Pierre
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/39010
    Version
    First author draft
    Citation (published version)
    Jiawen Xu, Pierre Perron. 2018. "Forecasting in the Presence of In and Out of Sample Breaks."
    Abstract
    We present a frequentist-based approach to forecast time series in the presence of in-sample and out-of-sample breaks in the parameters of the forecasting model. We first model the parameters as following a random level shift process, with the occurrence of a shift governed by a Bernoulli process. In order to have a structure so that changes in the parameters be forecastable, we introduce two modifications. The first models the probability of shifts according to some covariates that can be forecasted. The second incorporates a built-in mean reversion mechanism to the time path of the parameters. Similar modifications can also be made to model changes in the variance of the error process. Our full model can be cast into a conditional linear and Gaussian state space framework. To estimate it, we use the mixture Kalman filter and a Monte Carlo expectation maximization algorithm. Simulation results show that our proposed forecasting model provides improved forecasts over standard forecasting models that are robust to model misspecifications. We provide two empirical applications and compare the forecasting performance of our approach with a variety of alternative methods. These show that substantial gains in forecasting accuracy are obtained.
    Collections
    • BU Open Access Articles [3667]
    • CAS: Economics: Scholarly Papers [187]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help