Show simple item record

dc.contributor.authorSzczesny, Maciejen_US
dc.contributor.authorBeers, Daviden_US
dc.date.accessioned2019-12-20T14:52:17Z
dc.date.available2019-12-20T14:52:17Z
dc.date.issued2019
dc.identifier.citationMaciej Szczesny, David Beers. 2019. "Split Grothendieck rings of rooted trees and skew shapes via monoid representations." Vol. 12, No. 8, 1379-1397. https://doi.org/10.2140/involve.2019.12.1379
dc.identifier.urihttps://hdl.handle.net/2144/39029
dc.description.abstractWe study commutative ring structures on the integral span of rooted trees and n -dimensional skew shapes. The multiplication in these rings arises from the smash product operation on monoid representations in pointed sets. We interpret these as Grothendieck rings of indecomposable monoid representations over F 1 — the “field” of one element. We also study the base-change homomorphism from ⟨ t ⟩ -modules to k [ t ] -modules for a field k containing all roots of unity, and interpret the result in terms of Jordan decompositions of adjacency matrices of certain graphs.en_US
dc.subjectGrothendieck ringsen_US
dc.subjectField of one elementen_US
dc.subjectCombinatoricsen_US
dc.subjectRooted treesen_US
dc.subjectSkew shapesen_US
dc.titleSplit Grothendieck rings of rooted trees and skew shapes via monoid representationsen_US
dc.typeArticleen_US
dc.description.versionFirst author draften_US
dc.identifier.doi10.2140/involve.2019.12.1379
pubs.elements-sourcemanual-entryen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, Administrationen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Mathematics & Statisticsen_US
pubs.publication-statusPublished onlineen_US
dc.date.online2018-12-06
dc.identifier.mycv424665


This item appears in the following Collection(s)

Show simple item record