Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Robust estimation of the scale and of the autocovariance function of Gaussian short- and long-range dependent processes

    Thumbnail
    Date Issued
    2011-03-01
    Publisher Version
    10.1111/j.1467-9892.2010.00688.x
    Author(s)
    Levy-Leduc, Celine
    Boistard, Helene
    Moulines, Eric
    Taqqu, Murad S.
    Reisen, Valderio A.
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/39132
    Version
    First author draft
    Citation (published version)
    Celine Levy-Leduc, Helene Boistard, Eric Moulines, Murad S Taqqu, Valderio A Reisen. 2011. "Robust estimation of the scale and of the autocovariance function of Gaussian short- and long-range dependent processes." JOURNAL OF TIME SERIES ANALYSIS, Volume 32, Issue 2, pp. 135 - 156 (22). https://doi.org/10.1111/j.1467-9892.2010.00688.x
    Abstract
    A desirable property of an autocovariance estimator is to be robust to the presence of additive outliers. It is well-known that the sample autocovariance, being based on moments, does not have this property. Hence, the use of an autocovariance estimator which is robust to additive outliers can be very useful for time-series modeling. In this paper, the asymptotic properties of the robust scale and autocovariance estimators proposed by Rousseeuw and Croux (1993) and Genton and Ma (2000) are established for Gaussian processes, with either short-range or long-range dependence. It is shown in the short-range dependence setting that this robust estimator is asymptotically normal at the rate √n, where n is the number of observations. An explicit expression of the asymptotic variance is also given and compared to the asymptotic variance of the classical autocovariance estimator. In the long-range dependence setting, the limiting distribution displays the same behavior than that of the classical autocovariance estimator, with a Gaussian limit and rate √n when the Hurst parameter H is less 3/4 and with a non-Gaussian limit (belonging to the second Wiener chaos) with rate depending on the Hurst parameter when H ∈ (3/4,1). Some Monte-Carlo experiments are presented to illustrate our claims and the Nile River data is analyzed as an application. The theoretical results and the empirical evidence strongly suggest using the robust estimators as an alternative to estimate the dependence structure of Gaussian processes.
    Collections
    • CAS: Mathematics & Statistics: Scholarly Papers [263]
    • BU Open Access Articles [3666]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help