Show simple item record

dc.contributor.advisorZhang, Xinen_US
dc.contributor.advisorCharest, Joseph L.en_US
dc.contributor.authorSutherland, David Wesleyen_US
dc.date.accessioned2020-02-13T15:20:30Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/2144/39373
dc.description.abstractCentral venous catheters (CVCs) are semi-permanent implants that provide vascular access for various life-saving procedures, despite increased patient risk due to high rates of thrombotic occlusion and biofilm formation. The majority of CVC complications are caused by fibrin sheath formation, initiated by protein adsorption on the device surface upon exposure to blood. Current solutions are passive and ineffective at preventing these failure modes and treatment options are limited and often harmful to the patient. This dissertation presents the development and characterization of an active fluid mechanics-based mechanism that reduces the resistance to flow, predictably prevents the adsorption of biologic material, and provides targeted delivery of active agents to prolong patency and reduce complication rates in clinical CVCs. Water Infused Surface Protection (WISP) is a replenishing core-annular flow created by infusing fluid across a porous lumen wall, forming a protective boundary layer at the CVC surface. A model benchtop device capable of creating the WISP flow in an in vitro setting was developed and validated. Validation was performed using lubrication theory to compare experimental results to an adapted core-annular Navier-Stokes solution and a CFD model. The validated in vitro device was used to demonstrate the ability of the WISP technology to reduce protein adsorption on a model CVC surface, as well as allow for characterization of additional WISP performance mechanics. These mechanics include the continued protection of the lumen surface over extended time scales, the delivery and increased efficiency of clinically relevant anticoagulants to the lumen surface, and the removal of pre-adsorbed material. To analyze the boundary layer stability while scaling the WISP technology to clinically relevant flow rates, a novel imaging and analysis technique was developed capable of visualizing micron scale flow patterns through opaque materials using x-ray microscopy. This technique was used to characterize the stability of the core-annular interface at clinical Reynolds numbers. Comparison of these results to blood flow experiments suggested the separation of blood from the CVC wall under these conditions. These results were used to design and fabricate a single lumen clinical WISP prototype CVC that demonstrated a 98% reduction in protein adsorption.en_US
dc.language.isoen_US
dc.rightsAttribution-NoDerivatives 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subjectMechanical engineeringen_US
dc.subjectBlooden_US
dc.subjectCannulaen_US
dc.subjectHemorheologyen_US
dc.subjectMedical deviceen_US
dc.subjectThrombosisen_US
dc.subjectVascular accessen_US
dc.titleWater infused surface protection for central venous cathetersen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2020-01-29T17:01:31Z
dc.description.embargo2021-01-29T00:00:00Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineMechanical Engineeringen_US
etd.degree.grantorBoston Universityen_US
dc.identifier.orcid0000-0002-9557-5813


This item appears in the following Collection(s)

Show simple item record

Attribution-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NoDerivatives 4.0 International