Show simple item record

dc.contributor.authorFranzese, Giancarloen_US
dc.contributor.authorMalescio, Gianpietroen_US
dc.contributor.authorSkibinsky, Annaen_US
dc.contributor.authorBuldyrev, Sergey V.en_US
dc.contributor.authorStanley, H. Eugeneen_US
dc.date.accessioned2020-03-26T15:55:38Z
dc.date.available2020-03-26T15:55:38Z
dc.date.issued2001-02-08
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000166816400036&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationGiancarlo Franzese, Gianpietro Malescio, Anna Skibinsky, Sergey V. Buldyrev, H. Eugene Stanley. 2001. "Generic mechanism for generating a liquid-liquid phase transition." NATURE, Volume 409, Issue 6821, pp. 692 - 695. https://doi.org/10.1038/35055514
dc.identifier.issn0028-0836
dc.identifier.urihttps://hdl.handle.net/2144/39823
dc.description.abstractRecent experimental results1 indicate that phosphorus—a single-component system—can have a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities2 is consistent with experimental data for a variety of materials3,4, including single-component systems such as water5,6,7,8, silica9 and carbon10. Molecular dynamics simulations of very specific models for supercooled water2,11, liquid carbon12 and supercooled silica13 predict a LDL–HDL critical point, but a coherent and general interpretation of the LDL–HDL transition is lacking. Here we show that the presence of a LDL and a HDL can be directly related to an interaction potential with an attractive part and two characteristic short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state (in particular, liquid metals 2,14,15,16,17,18,19,20,21), and such potentials are often used to describe systems that exhibit a density anomaly2. However, our results show that the LDL and HDL phases can occur in systems with no density anomaly. Our results therefore present an experimental challenge to uncover a liquid–liquid transition in systems like liquid metals, regardless of the presence of a density anomaly.en_US
dc.format.extentp. 692 - 695.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherMacmillian Publishers LTDen_US
dc.relation.ispartofNature
dc.subjectScience & technologyen_US
dc.subjectMultidisciplinary sciencesen_US
dc.subjectWateren_US
dc.subjectCoreen_US
dc.subjectCarbonen_US
dc.titleGeneric mechanism for generating a liquid-liquid phase transitionen_US
dc.typeArticleen_US
dc.description.versionFirst author draften_US
dc.identifier.doi10.1038/35055514
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Physicsen_US
pubs.publication-statusPublisheden_US
dc.identifier.mycv93120


This item appears in the following Collection(s)

Show simple item record