Show simple item record

dc.contributor.authorNunes Amaral, Luís A.en_US
dc.contributor.authorBarabási, Albert-Lászlóen_US
dc.contributor.authorMakse, Hernán A.en_US
dc.contributor.authorStanley, H. Eugeneen_US
dc.date.accessioned2020-04-01T14:41:06Z
dc.date.available2020-04-01T14:41:06Z
dc.date.issued1995-10-01
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1995TA52500019&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationLuís A. Nunes Amaral, Albert-László Barabási, Hernán A. Makse, H. Eugene Stanley. 1995. "SCALING PROPERTIES OF DRIVEN INTERFACES IN DISORDERED MEDIA." PHYSICAL REVIEW E, Volume 52, Issue 4, pp. 4087 - 4104. https://doi.org/10.1103/PhysRevE.52.4087
dc.identifier.issn1063-651X
dc.identifier.urihttps://hdl.handle.net/2144/39916
dc.description.abstractWe perform a systematic study of several models that have been proposed for the purpose of understanding the motion of driven interfaces in disordered media. We identify two distinct universality classes: (i) One of these, referred to as directed percolation depinning (DPD), can be described by a Langevin equation similar to the Kardar-Parisi-Zhang equation, but with quenched disorder. (ii) The other, referred to as quenched Edwards-Wilkinson (QEW), can be described by a Langevin equation similar to the Edwards-Wilkinson equation but with quenched disorder. We find that for the DPD universality class the coefficient λ of the nonlinear term diverges at the depinning transition, while for the QEW universality class either λ = 0 or λ → 0 as the depinning transition is approached. The identification of the two universality classes allows us to better understand many of the results previously obtained experimentally and numerically. However, we find that some results cannot be understood in terms of the exponents obtained for the two universality classes at the depinning transition. In order to understand these remaining disagreements, we investigate the scaling properties of models in each of the two universality classes above the depinning transition. For the DPD universality class, we find for the roughness exponent αP = 0.63 ± 0.03 for the pinned phase, and αM = 0.75 ± 0.05 for the moving phase. For the growth exponent, we find βP = 0.67 ± 0.05 for the pinned phase, and βM = 0.74 ± 0.06 for the moving phase. Furthermore, we find an anomalous scaling of the prefactor of the width on the driving force. A new exponent ϕM = −0.12 ± 0.06, characterizing the scaling of this prefactor, is shown to relate the values of the roughness exponents on both sides of the depinning transition. For the QEW universality class, we find that αP ≈ αM = 0.92 ± 0.04 and βP ≈ βM = 0.86 ± 0.03 are roughly the same for both the pinned and moving phases. Moreover, we again find a dependence of the prefactor of the width on the driving force. For this universality class, the exponent ϕM = 0.44 ± 0.05 is found to relate the different values of the local αP and global roughness exponent αG ≈ 1.23 ± 0.04 at the depinning transition. These results provide us with a more consistent understanding of the scaling properties of the two universality classes, both at and above the depinning transition. We compare our results with all the relevant experiments.en_US
dc.format.extentpp. 4087 - 4104.en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofPhysical Review E
dc.rights©2005 American Physical Societyen_US
dc.subjectScience & technologyen_US
dc.subjectPhysical sciencesen_US
dc.subjectPhysics, fluids & plasmasen_US
dc.subjectPhysics, mathematicalen_US
dc.subjectPhysicsen_US
dc.subjectAffine fractal interfacesen_US
dc.subjectField ising-modelen_US
dc.subjectPorous-mediaen_US
dc.subjectImmiscible displacementen_US
dc.subjectBallistic-depositionen_US
dc.subjectCorrelated noiseen_US
dc.subjectFluid invasionen_US
dc.subjectSurface growthen_US
dc.subjectRough surfacesen_US
dc.subjectPercolationen_US
dc.titleScaling properties of driven interfaces in disordered mediaen_US
dc.typeArticleen_US
dc.description.versionFirst author draften_US
dc.identifier.doi10.1103/PhysRevE.52.4087
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Physicsen_US
pubs.publication-statusPublisheden_US
dc.identifier.mycv94813


This item appears in the following Collection(s)

Show simple item record