Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Decomposition of Lagrangian classes on K3 surfaces

    Thumbnail
    Date Issued
    2020
    Author(s)
    Lai, Kuan-Wen
    Lin, Yu-Shen
    Schaffler, Luca
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/40385
    OA Version
    Other
    Citation (published version)
    Kuan-Wen Lai, Yu-Shen Lin, Luca Schaffler. 2020. "Decomposition of Lagrangian Classes on K3 Surfaces." preprint, arXiv: 2001.00202, https://arxiv.org/abs/2001.00202
    Abstract
    We study the decomposability of a Lagrangian homology class on a K3 surface into a sum of classes represented by special Lagrangian submanifolds, and develop criteria for it in terms of lattice theory. As a result, we prove the decomposability on an arbitrary K3 surface with respect to the Kähler classes in dense subsets of the Kähler cone. Using the same technique, we show that the Kähler classes on a K3 surface which admit a special Lagrangian fibration form a dense subset also. This implies that there are infinitely many special Lagrangian 3-tori in any log Calabi-Yau 3-fold.
    Collections
    • CAS: Mathematics & Statistics: Scholarly Papers [268]
    • BU Open Access Articles [3730]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help