Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Sensing of the melanoma biomarker TROY using silicon nanowire field-effect transistors

    Thumbnail
    Date Issued
    2016-06-01
    Publisher Version
    10.1021/acssensors.6b00017
    Author(s)
    Maedler, Carsten
    Kim, Daniel
    Spanjaard, Remco A.
    Hong, Mi
    Erramilli, Shyamsunder
    Mohanty, Pritiraj
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/40486
    Version
    Accepted manuscript
    Citation (published version)
    Carsten Maedler, Daniel Kim, Remco A Spanjaard, Mi Hong, Shyamsunder Erramilli, Pritiraj Mohanty. 2016. "Sensing of the Melanoma Biomarker TROY Using Silicon Nanowire Field-Effect Transistors." ACS SENSORS, Volume 1, Issue 6, pp. 696 - 701 (6). https://doi.org/10.1021/acssensors.6b00017
    Abstract
    Antibody-functionalized silicon nanowire field-effect transistors have been shown to exhibit excellent analyte detection sensitivity enabling sensing of analyte concentrations at levels not readily accessible by other methods. One example where accurate measurement of small concentrations is necessary is detection of serum biomarkers, such as the recently discovered tumor necrosis factor receptor superfamily member TROY (TNFRSF19), which may serve as a biomarker for melanoma. TROY is normally only present in brain but it is aberrantly expressed in primary and metastatic melanoma cells and shed into the surrounding environment. In this study, we show the detection of different concentrations of TROY in buffer solution using top-down fabricated silicon nanowires. We demonstrate the selectivity of our sensors by comparing the signal with that obtained from bovine serum albumin in buffer solution. Both the signal size and the reaction kinetics serve to distinguish the two signals. Using a fast-mixing two-compartment reaction model we are able to extract the association and dissociation rate constants for the reaction of TROY with the antibody immobilized on the sensor surface.
    Collections
    • CAS: Physics: Scholarly Papers [414]
    • BU Open Access Articles [4757]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help