Show simple item record

dc.contributor.authorRana, Kunjan D.en_US
dc.contributor.authorCaldwell, Benvyen_US
dc.contributor.authorVaina, Lucia M.en_US
dc.coverage.spatialBoston, MAen_US
dc.date.accessioned2020-05-12T17:10:26Z
dc.date.available2020-05-12T17:10:26Z
dc.date.issued2011-01-01
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000298810001069&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationKunjan D Rana, Benvy Caldwell, Lucia M Vaina. 2011. "A method for selecting an efficient diagnostic protocol for classification of perceptive and cognitive impairments in neurological patients." 2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), pp. 1129 - 1132 (4).
dc.identifier.issn1557-170X
dc.identifier.urihttps://hdl.handle.net/2144/40801
dc.description"Published in final edited form as: Conf Proc IEEE Eng Med Biol Soc. 2011 ; 2011: 1129–1132. doi:10.1109/IEMBS.2011.6090264."en_US
dc.description.abstractAn important and unresolved problem in the assessment of perceptual and cognitive deficits in neurological patients is how to choose from the many existing behavioral tests, a subset that is sufficient for an appropriate diagnosis. This problem has to be dealt with in clinical trials, as well as in rehabilitation settings and often even at bedside in acute care hospitals. The need for efficient, cost effective and accurate diagnostic-evaluations, in the context of clinician time constraints and concerns for patients’ fatigue in long testing sessions, make it imperative to select a set of tests that will provide the best classification of the patient’s deficits. However, the small sample size of the patient population complicates the selection methodology and the potential accuracy of the classifier. We propose a method that allows for ordering tests based on having progressive increases in classification using cross-validation to assess the classification power of the chosen test set. This method applies forward linear regression to find an ordering of the tests with leave-one-out cross-validation to quantify, without biasing to the training set, the classification power of the chosen tests.en_US
dc.description.sponsorshipR01 NS064100 - NINDS NIH HHS; R01NS064100 - NINDS NIH HHSen_US
dc.format.extentp. 1129 - 1132en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherIEEEen_US
dc.relation.ispartof2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)
dc.subjectScience & technologyen_US
dc.subjectEngineering, biomedicalen_US
dc.subjectEngineering, electrical & electronicen_US
dc.subjectMotion perceptionen_US
dc.subjectBiological motionen_US
dc.subjectVisual motionen_US
dc.subjectDeficitsen_US
dc.subjectLesionsen_US
dc.subjectSegregationen_US
dc.subjectAreaen_US
dc.subjectIntegrationen_US
dc.subjectMechanismsen_US
dc.subjectBatteryen_US
dc.subjectAlgorithmsen_US
dc.subjectCognition disordersen_US
dc.subjectDecision support systems, clinicalen_US
dc.subjectDiagnosis, computer-assisteden_US
dc.subjectDiagnostic techniques, neurologicalen_US
dc.subjectHumansen_US
dc.subjectNervous system diseasesen_US
dc.subjectReproducibility of resultsen_US
dc.subjectSensitivity and specificityen_US
dc.titleA method for selecting an efficient diagnostic protocol for classification of perceptive and cognitive impairments in neurological patientsen_US
dc.typeArticleen_US
dc.description.versionAccepted manuscripten_US
dc.identifier.doi10.1109/IEMBS.2011.6090264
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, Administrationen_US
pubs.organisational-groupBoston University, College of Engineeringen_US
pubs.organisational-groupBoston University, College of Engineering, Department of Biomedical Engineeringen_US
pubs.publication-statusPublisheden_US
dc.identifier.orcid0000-0002-5636-8352 (Vaina, Lucia M)
dc.identifier.mycv68302


This item appears in the following Collection(s)

Show simple item record