Show simple item record

dc.contributor.authorLloyd, Daviden_US
dc.contributor.authorLiu, Xinghuien_US
dc.contributor.authorBoddeti, Narasimhaen_US
dc.contributor.authorCantley, Laurenen_US
dc.contributor.authorLong, Rongen_US
dc.contributor.authorDunn, Martin L.en_US
dc.contributor.authorBunch, J. Scotten_US
dc.date.accessioned2020-05-14T19:09:30Z
dc.date.available2020-05-14T19:09:30Z
dc.date.issued2017-09-01
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000411043500022&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=6e74115fe3da270499c3d65c9b17d654
dc.identifier.citationDavid Lloyd, Xinghui Liu, Narasimha Boddeti, Lauren Cantley, Rong Long, Martin L Dunn, J Scott Bunch. 2017. "Adhesion, Stiffness, and Instability in Atomically Thin MoS2 Bubbles." NANO LETTERS, Volume 17, Issue 9, pp. 5329 - 5334 (6). https://doi.org/10.1021/acs.nanolett.7b01735
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttps://hdl.handle.net/2144/40883
dc.description.abstractWe measured the work of separation of single and few-layer MoS_2 membranes from a SiO_x substrate using a mechanical blister test and found a value of 220 ± 35 mJ/m^2. Our measurements were also used to determine the 2D Young’s modulus (E_2D) of a single MoS_2 layer to be 160 ± 40 N/m. We then studied the delamination mechanics of pressurized MoS2 bubbles, demonstrating both stable and unstable transitions between the bubbles’ laminated and delaminated states as the bubbles were inflated. When they were deflated, we observed edge pinning and a snap-in transition that are not accounted for by the previously reported models. We attribute this result to adhesion hysteresis and use our results to estimate the work of adhesion of our membranes to be 42 ± 20 mJ/m^2en_US
dc.description.sponsorshipThis work was funded by the National Science Foundation (NSF), Grant 1054406 (CMMI: CAREER, Atomic Scale Defect Engineering in Graphene Membranes), a grant to L.C. by the NSF Graduate Research Fellowship Program under Grant DGE-1247312, and a BUnano Cross-Disciplinary Fellowship to D.L. We thank Chuanhua Duan for use of the high speed camera. (1054406 - National Science Foundation (NSF); DGE-1247312 - NSF Graduate Research Fellowship Program; BUnano Cross-Disciplinary Fellowship)en_US
dc.format.extentp. 5329 - 5334en_US
dc.languageEnglish
dc.language.isoen_US
dc.publisherAMER CHEMICAL SOCen_US
dc.relation.ispartofNANO LETTERS
dc.subjectScience & technologyen_US
dc.subjectPhysical sciencesen_US
dc.subjectChemistry, multidisciplinaryen_US
dc.subjectChemistry, physicalen_US
dc.subjectNanoscience & nanotechnologyen_US
dc.subjectMaterials science, multidisciplinaryen_US
dc.subjectPhysics, applieden_US
dc.subjectPhysics, condensed matteren_US
dc.subjectAdhesionen_US
dc.subjectMoS2en_US
dc.subjectAdhesion hysteresisen_US
dc.subjectYoung's modulusen_US
dc.subjectFrictionen_US
dc.subjectBubbleen_US
dc.subjectMonolayer MoS2en_US
dc.subjectNanoelectromechanical switchesen_US
dc.subjectGraphene membranesen_US
dc.subjectFracture-mechanicsen_US
dc.subjectBlister testen_US
dc.subjectContacten_US
dc.subjectSurfaceen_US
dc.subjectStrainen_US
dc.subjectSheetsen_US
dc.subjectEnergyen_US
dc.titleAdhesion, stiffness, and instability in atomically thin MoS2 bubblesen_US
dc.typeArticleen_US
dc.description.versionAccepted manuscripten_US
dc.identifier.doi10.1021/acs.nanolett.7b01735
pubs.elements-sourceweb-of-scienceen_US
pubs.notesEmbargo: Not knownen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Engineeringen_US
pubs.organisational-groupBoston University, College of Engineering, Department of Mechanical Engineeringen_US
pubs.publication-statusPublisheden_US
dc.identifier.mycv253394


This item appears in the following Collection(s)

Show simple item record