Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    Indoor 3D localization with low-cost LiFi components

    Thumbnail
    License
    Attribution-NonCommercial-NoDerivatives 4.0 International
    Date Issued
    2019-06
    Publisher Version
    10.1109/GLC.2019.8864119
    Author(s)
    Lam, Emily W.
    Little, Thomas D.C.
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/40908
    Version
    Accepted manuscript
    Citation (published version)
    Emily W. Lam, Thomas D.C. Little. 2019. "Indoor 3D Localization with Low-Cost LiFi Components." 2019 Global LIFI Congress (GLC). IEEE, https://doi.org/10.1109/GLC.2019.8864119
    Abstract
    Indoor positioning or localization is an enabling technology expected to have a profound impact on mobile applications. Various modalities of radio frequency, ultrasound, and light can be used for localization; in this paper we consider how visible light positioning can be realized for 3D positioning as a service comprised of optical sources as part of an overarching lighting infrastructure. Our approach, called Ray-Surface Positioning, uses one or more overhead luminaires, modulated as LiFi, and is used in conjunction with a steerable laser to realize position estimates in three dimensions. In this paper, we build and demonstrate Ray-Surface Positioning using low-cost commodity components in a test apparatus representing one quadrant of a 4m × 4m × 1m volume. Data are collected at regular intervals in the test volume representing 3D position estimates and is validated using a motion capture system. For the low-cost components used, results show position estimate errors of less than 30cm for 95% of the test volume. These results, generated with commodity components, show the potential for 3D positioning in the general case. When the plane of the receiver is known a priori, the position estimate error diminishes to the resolution of the steering mechanism.
    Rights
    Attribution-NonCommercial-NoDerivatives 4.0 International
    Collections
    • ENG: Electrical and Computer Engineering: Scholarly Papers [257]
    • BU Open Access Articles [3730]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help