Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Nanoparticles modulate lysosomal acidity and autophagic flux to rescue cellular dysfunction

    Thumbnail
    License
    Attribution-NonCommercial-NoDerivatives 4.0 International
    Date Issued
    2020
    Author(s)
    Zeng, Jialiu
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Embargoed until:
    2022-05-18
    Permanent Link
    https://hdl.handle.net/2144/41021
    Abstract
    Autophagy is a critical cellular maintenance machinery in cells, and prevents the accumulation of toxic protein aggregates, organelles or lipid droplets through degradation via the lysosome. In macro-autophagy, autophagosome first engulfs around aggregates or cellular debris and subsequently fuses with a lysosome that is sufficiently acidic (pH 4.5–5.5), where the contents are then degraded via lysosomal enzymes. Autophagy inhibition as a result of lysosomal acidification dysfunction (pH > 5.5) have been reported to play a major role in various diseases pathogenesis. Hence, there is a pressing need to target lysosomal pH to rescue autophagy. Nanoparticles are attractive materials which has been shown to be efficiently uptaken into cellular organelles and can serve as an agent to specifically localize into lysosomes and modulate its pH. Lipotoxicity, induced by chronic exposure to free fatty acids, and exposure to neurotoxins (e.g. MPP+), elevates lysosomal pH in pancreatic beta cells (Type II Diabetes, T2D) and hepatocytes (Non-alcoholic fatty liver disease, NAFLD), and PC-12 cells (Parkinson’s Disease), respectively. We first tested the lysosome acidification capability of photo-activable nanoparticles (paNPs) and poly (lactic-co-glycolic) acid nanoparticles (PLGA NPs) in a T2D model. Both NPs lowered lysosomal pH in pancreatic beta cells under lipotoxicity and improved insulin secretion function. However, paNPs only release acids upon UV trigger, limiting its applicability in vivo, while PLGA NPs degrade upon lysosome localization. We further showed that PLGA NPs are able to rescue MPP+ induced cell death in a PD model, though it has a slow degradation rate. To attain the most efficacious nanoparticle with a fast degradation and acidification rate, we synthesized acidic nanoparticles (acNPs) based on tetrafluorosuccinic and succinic acids to form optimized nanoparticles. The acNPs showed faster rescue of cellular function compared to PLGA NPs in the PD model. Finally, we tested the acNPs in NAFLD model, and where lysosomal pH reduction by acNPs restored autophagy, reduced lipid accumulation, and improved mitochondria function in high-fat diet mice. In sum, nanoparticles are of potential therapeutic interest for pathologies associated with lysosomal acidity impairment. Future studies include testing the acNPs in NASH disease model and clinical studies.
    Rights
    Attribution-NonCommercial-NoDerivatives 4.0 International
    Collections
    • Boston University Theses & Dissertations [6981]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help