Show simple item record

dc.contributor.advisorFranzblau, Carlen_US
dc.contributor.authorBeidas, Yousef Basselen_US
dc.date.accessioned2020-06-12T17:15:14Z
dc.date.available2020-06-12T17:15:14Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/2144/41182
dc.description.abstractINTRODUCTION: Fractures and broken bones are complications within the pediatric population that frequently occur. Many children require a prolonged immobilization of an arm or leg as a result of these injuries. Physicians often place these children in casts for several weeks to months. While casting is needed for most fractures to properly heal and recover, the two most popular casts plaster and fiberglass, can cause certain complications. Parents struggle dealing with how to bathe their children without getting the cast wet. Also, it is difficult to tell how well the child's skin beneath the cast is doing during the duration of the cast immobilization. Sometimes blood blisters or rashes can develop on the surface of the child’s skin. With the rampant development of 3D printers, the printing of 3D casts has become readily available and cheap. The biggest advantages to using 3D printed casts include them being lightweight and their ability to get wet. This ongoing feasibility study looks at the clinical effectiveness of 3D printed casts in treating children with minimally displaced radius fractures. OBJECTIVES: The main objective of this feasibility study is trying to incorporate the use of 3D printing technology to pediatric patients. Other objectives include creating, designing, and placement of 3D printed casts on patients. Determine the clinical effectiveness of 3D printed casts and ensuring the patient’s fracture healed correctly. Evaluate the skin of patients who have completed a cast immobilization in a 3D printed cast. METHODS: Patients are recruited from the Children’s National Hospital Emergency Room in Washington, D.C. If a patient meets the inclusion criteria, the Chief of Pediatric Orthopedic Surgery at Children’s National Hospital will introduce the feasibility study to both the patients and their families. Once enrolled in the study, the patient will have a 3D scan taken of their injured wrist and arm with an Artec EVA, a handheld 3D scanner. The 3D scan is taken worked through multiple software programs that create a patient-specific 3D cast. The casts are printed either by an in-house 3D printer at Children’s National or outsourced to Xometry, a company that specializes in 3D printing. The patient returns one week later from the time the scan was taken and will be removed from the temporary splint they had been placed in. The Principal Investigator or the Chief of Pediatric Orthopedic Surgery will wrap the patient’s arm with AquaLiner, a waterproof cast liner. The 3D printed cast is then placed on the patient’s arm and firmly secured with eight zip-ties. Three X-rays will be taken throughout the course of the cast immobilization that may last four to six weeks. A skin assessment tool that has a scale from zero to twelve will be used by the physicians involved to evaluate the skin of the patient post-treatment. Lastly, a QuickDash survey will be filled out by the patient before being discharged and a QuickDash score that determines percent disability will be calculated on a scale of 0-100 percent. RESULTS: One patient enrolled and completed the feasibility study. The patient’s X-rays indicated their fracture healed properly while immobilized in the 3D printed cast. A score of ten out of twelve was given based on the skin assessment tool. The QuickDash score resulted in a 6.8 percent disability. The patient stated that they would have chosen the 3D printed cast over a traditional plaster cast due to the comfortability of the cast. CONCLUSIONS: Overall, the results from the one patient that completed the study proved that 3D printed casts can be used to treat minimally displaced radius fractures. The 3D printed cast was able to keep the patient’s arm in place and protect it while the fracture healed. Much of the work put into this feasibility study was the workflow needed to create and place a 3D printed cast on a patient. The appearance and design of the cast allowed the patient to feel comfortable during the entire treatment. More patients will need to be recruited and enrolled into the study to tell whether or not this project can be moved into other medical applications.en_US
dc.language.isoen_US
dc.subjectMedicineen_US
dc.subject3D printingen_US
dc.titleClinical effectiveness of a 3-dimensional printed cast in treatment of minimally displaced radius fracturesen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2020-06-11T22:01:52Z
etd.degree.nameMaster of Scienceen_US
etd.degree.levelmastersen_US
etd.degree.disciplineMedical Sciencesen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record